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Abstract

We develop several algorithms taking advan-
tage of two common approaches for bound-
ing MPE queries in graphical models: mini-
bucket elimination and message-passing up-
dates for linear programming relaxations.
Both methods are quite similar, and offer use-
ful perspectives for the other; our hybrid ap-
proaches attempt to balance the advantages
of each. We demonstrate the power of our
hybrid algorithms through extensive empiri-
cal evaluation. Most notably, a Branch and
Bound search guided by the heuristic func-
tion calculated by one of our new algorithms
has recently won first place in the PASCAL2
inference challenge.

1 INTRODUCTION

Combinatorial optimization tasks such as finding the
most likely variable assignment of a probability model,
the most probable explanation (MPE) or maximum a

posteriori (MAP) problem, arise in many applications.
These problems are typically NP-hard; graphical mod-
els provide a popular framework for reasoning about
such tasks and organizing computations (Pearl, 1988).

Mini-Bucket Elimination (MBE) (Dechter & Rish,
2003) is a popular bounding scheme that generates
upper and lower bounds by applying the exact Bucket
Elimination (BE) algorithm (Dechter, 1999) to a sim-
plified problem obtained by duplicating variables. The
relaxation view of MBE is closely related to a fam-
ily of iterative approximation techniques based on lin-
ear programming (LP). These include “reweighted”
max-product (Wainwright et al., 2005), max-product
linear programming (MPLP) (Globerson & Jaakkola,
2007), dual decomposition (Komodakis et al., 2007),
and soft arc consistency (Schiex, 2000; Bistarelli et al.,
2000). These algorithms simplify the graphical model

into independent components and tighten the resulting
bound via iterative cost-shifting updates. They can be
thought of as “re-parameterizing” the original func-
tions without changing the global model. Most of the
schemes operate on the original factors of the model,
although some works tighten the approximations by
introducing larger clusters (Sontag et al., 2008).

In this paper we combine these ideas to define two
new hybrid schemes. One algorithm, called mini-
buckets with max-marginal matching (MBE-MM), is
a non-iterative algorithm that applies a single pass of
cost-shifting during the mini-bucket construction. The
second approach, Join Graph Linear Programming
(JGLP) applies cost-shifting updates to the full mini-
bucket join-graph, iteratively. Our empirical evalua-
tion demonstrates the increased power of these hybrid
approximations over their individual components.

Finally, one of the primary uses of bounding schemes
is in generating heuristics for Best-First and Branch
and Bound search (Marinescu & Dechter, 2009a,b).
Our hybrid schemes drastically decrease the search
space explored by Branch and Bound to significantly
increase its power, evidenced by both our empirical
evaluation and the results of the current Probabilistic
Inference Challenge1, where our algorithm won first
place in all optimization categories.

From an LP perspective, JGLP can be viewed as a
specific algorithm within the class of generalized EM-
PLP (Sontag & Jaakkola, 2009). Its main novelty is
in showing how the systematic join-graph structures
of mini-bucket can facilitate effective clique choices.
JGLP works “top down”, creating large clusters im-
mediately, compared to other methods (e.g., Sontag
& Jaakkola, 2009; Batra et al., 2011) that work “bot-
tom up” (gradually including triplets, etc.) and may
be less effective for large-width problems. Our non-
iterative MBE-MM algorithm is an MBE scheme with
some cost-shifting done locally in each bucket. From

1http://www.cs.huji.ac.il/project/PASCAL/



this perspective it is closely related to (Rollon & Lar-
rosa, 2006); the two methods differ primarily in the
form of the cost-shifting update within each bucket.
However, our update is motivated by its connection to
a globally applicable tightening algorithm.

2 PRELIMINARIES

We consider combinatorial optimization problems ex-
pressed as graphical models, including Markov and
Bayesian networks (Pearl, 1988) and constraint net-
works (Dechter, 2003). A graphical model is a tuple
M = (X,D,F,

⊗

), where X = {Xi : i ∈ V } is a set
of variables indexed by set V and D = {Di : i ∈ V }
is the set of their finite domains of values. F = {fα :
α ∈ F} is a set of discrete functions, where we use
α ⊆ V and Xα ⊆ X to indicate the scope of func-
tion fα, i.e., Xα = var(fα) = {Xi : i ∈ α}. The
set of function scopes implies a primal graph whose
vertices are the variables and which includes an edge
connecting any two variables that appear in the scope
of the same function. The combination operator

⊗

∈
{
∏

,
∑

, ⊲⊳} defines the complete function represented
by the graphical modelM as C(X) =

⊗

α∈F fα(Xα).
In this work, we focus on max-sum problems, in which
we would like to compute the optimal value C∗ and/or
its optimizing configuration x∗:

C∗ = C(x∗) = max
X

∑

α∈F

fα(Xα) (1)

2.1 MINI-BUCKET ELIMINATION

Bucket elimination (BE) (Dechter, 1999) is a popu-
lar algorithm for solving reasoning tasks over graphical
models. It is a special case of cluster tree elimination
in which the tree-structure upon which messages are
passed is determined by the variable elimination or-
der used. In BE terminology, the nodes of the tree-
structure are referred to as buckets and each bucket is
associated with a variable to be eliminated.

Each bucket is processed by BE in two steps. First, all
functions in the bucket are combined (by summation
in the case of max-sum problem). Then the variable
associated with the bucket is eliminated from the com-
bined function (by maximization in case of max-sum
task). The function resulting from the combination
and elimination steps can be viewed as a “message”
λi and is passed to the parent of the current bucket.
Processing occurs in this fashion, from the leaves of
the tree to the root, one node (bucket) at a time. The
time and space complexity of BE are exponential in
the graph parameter called the induced width w along
the ordering o (Dechter, 1999).

Mini-bucket elimination (MBE) (Dechter & Rish,
2003) is an approximation scheme designed to avoid
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Figure 1: The mini-bucket procedure for a simple
graph. (a) Original graph; (b) the buckets and mes-
sages computed in MBE; (c) interpreting MBE as vari-
able duplication, and message passing on the resulting
junction tree. X1 is duplicated in each of two mini-
buckets q11 = {f1(X1, X2)} and q21 = {f3(X1, X3)}.

the space and time complexity of BE. Consider a
bucket Bi and an integer bounding parameter z. MBE
creates a z-partition Qi = {q1i , . . . , q

p
i } of Bi, where

each set of functions q
j
i ∈ Qi, called a mini-bucket,

includes no more than z + 1 variables. Then each
mini-bucket is processed separately, just as in BE. The
scheme generates an upper bound on the exact optimal
solution and its time and space complexity of MBE is
exponential in z, which is chosen to be less than w,
when w is too large. In general, increasing z tightens
the upper bound, until z = w, in which case MBE finds
the exact solution. The form of mini-bucket makes it
easy to estimate and control both the computational
and storage complexity through a single parameter z.

MBE’s value is not only as a stand-alone bounding
scheme, but also as a mechanism for generating pow-
erful heuristic evaluation functions for informed search
algorithms. Exploration of its potential as a heuris-
tic generation scheme has yielded some of the most
powerful Best-First and Branch and Bound search en-
gines for graphical models, as summarized in (Kask &
Dechter, 2001; Marinescu & Dechter, 2009a,b).

Mini-bucket elimination can also be interpreted using
a junction tree view. The MBE bound corresponds
to a problem relaxation in which a copy X

j
i of vari-

able Xi is made for each mini-bucket qji ∈ Qi, and the

resulting messages λ
j
i correspond to the messages in

a junction tree defined on the augmented model over
the variable copies; this junction tree is guaranteed to
have induced-width z or less. Figure 1 shows a simple
example on three variables. The problems are equiv-
alent if all copies of Xi are constrained to be equal;



Algorithm 1 Join-Graph Structuring(z)

Input: Graphical model 〈X,D,F,
∑

〉, parameter z
Output: Join-graph with cluster size ≤ z + 1
1: Order the variables from X1 to Xn minimizing (heuris-

tically) induced-width
2: Generate an ordered partition of functions F = {fα}

into buckets B1, . . . ,Bn, where Bi is a bucket of vari-
able Xi

3: for i← n down to 1 (Processing bucket Bi) do
4: Partition functions in Bi into Qi = {q1i , . . . , q

p
i };

each qki has no more than z + 1 variables.
5: For each mini-bucket qki create a new set of variables

Sk
i = {X|X ∈ qki }−{Xi} and place it in the bucket

of its highest variable in the ordering
6: Maintain an arc between qki and the mini-bucket

(created later) that includes Sk
i

7: end for
8: Associate each resulting mini-bucket with a node in

the join-graph

9: Creating arcs: keep the arcs created in step 6 and

also connect the mini-bucket clusters belonging to the

same bucket (for example, in a chain).

otherwise, the additional degrees of freedom lead to a
relaxed problem and thus an upper bound.

The mini-bucket tree has several desirable properties
(Mateescu et al., 2010), including that it is a join-
graph (satisfies the running intersection property) and
each cluster has at most z+1 variables. The join-graph
construction process is given in Algorithm 1.

2.2 LINEAR PROGRAMMING METHODS

Recently various iterative re-parameterization ap-
proaches have been introduced that are derived by
solving an Linear Programming (LP) relaxation of the
graphical model. Wainwright et al. (Wainwright et al.,
2005) established the connections between LP relax-
ations of integer programming problems and (approxi-
mate) dynamic programming methods using message-
passing in the max-product algebra; subsequent im-
provements in algorithms such as max-product linear
programming (MPLP) include coordinate-descent up-
dates that ensure convergence (Globerson & Jaakkola,
2007; Sontag & Jaakkola, 2009). These methods are
closely related to the mini-bucket bounds; since we
build upon these approaches we introduce some of the
ideas in more detail here.

To match the bulk of the graphical model LP relax-
ation literature, for this section we assume that the
network consists of only pairwise functions fij(Xi, Xj).
A simple bound on the max-sum objective is then
given by maxima of the individual functions:

C∗ = max
X

∑

(ij)∈F

fij(Xi, Xj) ≤
∑

(ij)∈F

max
X

fij(Xi, Xj),

(2)

exchanging the sum and max operators. One can in-
terpret this operation as making an individual copy of
each variable for each function, and optimizing over
them separately.

However, we can also introduce a collection of func-
tions {λij(Xi), λji(Xj)} for each edge (ij), and require

λ ∈ Λ ⇔ ∀i,
∑

j

λij(Xi) = 0

Then, we have

C∗ = max
X

∑

(ij)∈F

fij(Xi, Xj)

= max
X

∑

(ij)∈F

fij(Xi, Xj) +
∑

i

∑

j

λij(Xi)

≤ min
λ∈Λ

∑

(ij)∈F

max
X

(

fij(Xi, Xj) + λij(Xi) + λji(Xj)
)

(3)

by distributing each λij to its associated factor and
applying the inequality (2).

The new functions f̃ij = fij(Xi, Xj) + λij(Xi) +
λji(Xj) define a re-parameterization of the original
distribution, i.e., they change the individual functions
without modifying the complete function C(X). De-
pending on the literature, the λij are interpreted as
“cost-shifting” operations that transfer cost from one
function to another while preserving the overall cost
function (Schiex, 2000; Rollon & Larrosa, 2006), or as
Lagrange multipliers enforcing consistency among the
copies of Xi (Yedidia et al., 2004; Wainwright et al.,
2005). In the former interpretation, the updates are
called “soft arc-consistency” due to their similarity to
arc-consistency for constraint satisfaction (Cooper &
Schiex, 2004). Under the latter view, the bound cor-
responds to a dual decomposition solver for a linear
programming (LP) relaxation of the original problem
(Komodakis & Paragios, 2008; Sontag et al., 2010).

The main distinguishing feature among such dual de-
composition approaches is the way in which the bound
is tightened by updating2 the functions λ, gener-
ally either sub-gradient or gradient approaches (Ko-
modakis & Paragios, 2008; Jojic et al., 2010) or co-
ordinate descent updates that can be interpreted as
“message passing” (Globerson & Jaakkola, 2007; Son-
tag & Jaakkola, 2009). In practice, coordinate descent
updates tend to tighten the bound more quickly, but
can become caught in sub-optimal minima caused by

2We refer to these iterative bound improvement up-
dates as “LP-tightening” updates, although technically we
are tightening the decomposition bound (3) which is the
dual of the LP. This is in contrast to literature that uses
“tightening” to mean the inclusion of additional constraints
(higher-order consistency), e.g., (Sontag et al., 2008).



Algorithm 2 LP-tightening

Input: Graphical model 〈X,D,F,
∑

〉, where fα is a po-
tential defined on variables Xα.

Output: Upper bound on the optimum value
1: Iterate until convergence:
2: for any pair α, β with Xαβ = Xα ∩Xβ 6= ∅ do
3: Compute max-marginals:

γα(Xαβ) = maxXα\Xαβ
fα(Xα)

γβ(Xαβ) = maxXβ\Xαβ
fβ(Xβ)

Update parameterization:
fα(Xα)← fα(Xα) +

1
2

(

γβ(Xαβ)− γα(Xαβ)
)

fβ(Xβ)← fβ(Xβ) +
1
2

(

γα(Xαβ)− γβ(Xαβ)
)

4: end for

the limited number of coordinate directions consid-
ered. Here we give an extremely simple update, most
closely related to the “tree-block” coordinate descent
updates derived in (Sontag & Jaakkola, 2009).

The algorithm is initialized with all λij(Xi) = 0. Let
us re-arrange the terms on right hand side of inequal-
ity 3, grouping together all functions that include a
particular variable Xi in their scope. Consider min-
imizing over a single pair λij(Xi), λik(Xi); since all
other terms are fixed, we minimize

[

max
X

fij + λij

]

+
[

max
X

fik + λik

]

= max
Xi

[

γij(Xi) + λij(Xi)
]

+max
Xi

[

γik(Xi) + λik(Xi)
]

≥ max
Xi

[

γij(Xi) + λij(Xi) + γik(Xi) + λik(Xi)
]

where we have defined the “max-marginals” γij(Xi) =
maxXj

fij(Xi, Xj), and we require that λij(Xi) +
λik(Xi) = 0 to preserve λ ∈ Λ. Many choices of λij

achieve this minimum; a useful one is

λij =
1

2

(

γik(Xi)− γij(Xi)
)

We can then set fij ← fij+λij and λij = 0 (preserving
λij(Xi) = 0 for all i,j) and repeat, giving a simple
coordinate descent update that can be interpreted as
a max-marginal or “moment”-matching procedure on
the functions fij . The update is easy to extend to
higher-order functions fα(Xα); see Algorithm 2.

Another useful intuition comes from the alternative
choice, λij = γik(Xi) = maxXk

fik(Xi, Xk). In this
case, the contribution of edge (ik)’s term to the bound
becomes zero. The “message” λij is equivalent to the
dynamic program computed on the chain j–i–k. It is
thus easy to see that dynamic programming (or vari-
able elimination) on a tree can also be interpreted
as coordinate descent on the same bound, using the
same set of coordinates, and that this procedure will
exactly optimize any tree-structured graph (Johnson
et al., 2007; Yarkony et al., 2010).

Algorithm 3 Factor graph LP (FGLP)

Input: Graphical model 〈X,D,F,
∑

〉, where fα is a po-
tential defined on variables Xα.

Output: Upper bound on the optimum value
1: Iterate until convergence:
2: for each variable Xi do
3: Get factors Fi = {α : i ∈ α} with Xi in their scope
4: ∀α, compute max-marginals:

γα(Xi) = maxXα\Xi
fα(Xα)

5: ∀α, update parameterization:
fα(Xα)← fα(Xα)− γα(Xi) +

1
|Fi|

∑

β∈Fi
γβ(Xi)

6: end for

A well-known LP-tightening algorithm is message-
passing linear programming (MPLP) (Globerson &
Jaakkola, 2007); its generalized version for higher-
order cliques tightens the same bound as Algorithm 2
under descent updates along the same coordinates.
The main distinction is that MPLP is formulated as
sending messages between variable “beliefs” and the
fij . Message-passing has the advantage that sched-
uled updates (e.g., Elidan et al., 2006; Sutton & Mc-
Callum, 2007) are easily applied. However, for cliques
with large separator sets these messages can consume a
noticable fraction of available memory. In contrast, re-
parameterization updates like Algorithm 2 never store
the λ, giving a memory advantage for large cliques.
Although some scheduling approaches, such as those
based on the decoding gap (Tarlow et al., 2011), are
still applicable to pure reparameterization updates,
our implementation used a fixed update ordering.

The original MPLP, soft-arc consistency, and many
other LP algorithms operate directly on the original
functions fα, updating coordinates that consist of sin-
gle variable functions λ(Xi) at each step; this corre-
sponds to message passing on the “factor graph” rep-
resentation of the model. Algorithm 3 (FGLP) gives
a simple extension of the matching update that oper-
ates on this factor graph LP and tightens all fij in-
volved with some Xi simultaneously. FGLP is similar
to the “star-shaped” tree block coordinate descent de-
rived in (Sontag & Jaakkola, 2009), but centered on
separators (variables) rather than cliques (factors); in
practice on our problems we found it faster than other
update methods for this LP.

3 JOIN GRAPH LINEAR

PROGRAMMING

From the perspective of Section 2.2, mini-bucket can
be viewed within the LP-tightening framework. The
mini-bucket procedure defines a join graph represented
as a collection of maximal cliques and separators. The
mini-bucket computations define a downward sweep
of dynamic programming on the join graph with du-



plicate variables; it is equivalent to running an LP-
tightening procedure to convergence, only messages
along edges of the mini-bucket spanning tree.

Given this view, it is straightforward to consider it-
erative updates on the same set of maximal cliques.
We can construct a join graph using the mini-bucket
relaxation, again assigning the original functions f to
their earliest clique and defining for any mini-bucket
qki a function associated with its corresponding clique,

Fqki
(Xqki

) =
∑

fα∈qki

fα(Xα) (4)

We then perform re-parameterization updates to the
functions Fq as in Algorithm 2. The resulting join-
graph linear programming (JGLP) algorithm is shown
in Algorithm 4.

Note that once JGLP converges, re-processing these
new functions using mini-bucket elimination using the
same value of z will not change the choice of cliques
(since no two cliques q, q′ could be joined without
violating the clique size bound, |Xq| ≤ z + 1). Ad-
ditionally, the MBE pass will not change the bound
value, since the MBE dynamic program can be viewed
as a sequence of coordinate-descent updates along a
subset of the edges, all of which must already be tight
if the algorithm has converged. In the sequel, we will
use this property of JGLP when developing heuristic
evaluation functions for search; see Section 5.

MBE vs. LP perspectives. From the LP perspec-
tive, the MBE process can be thought of as a heuristic
for selecting the cliques used to define the LP bound.
This heuristic has the advantage of being very fast
and controlled by a single integer value that is easy
to search over, and it is easy to estimate the mem-
ory requirements of the approximation. In practice
this results in a “top-down” construction, in which
z is set to the induced width and reduced until the
computational resource constraints are met. Existing
heuristics for selecting variable orderings with low in-
duced width (Robertson & Seymour, 1983; Kask et al.,
2011; Bodlaender, 2007; Gogate & Dechter, 2004) can
be easily applied as well. In contrast, most existing
generalized LP solvers work in a “bottom-up” fash-
ion, running the LP to convergence on the original
graph, then proposing slightly larger cliques (for exam-
ple, from among fully connected triplets of variables
(Sontag et al., 2008)) based on some greedy heuris-
tic. However, for problems with small variables and
reasonable resource constraints, it is easy to represent
very large cliques (z = 15 to 25), in which case the
top-down approach can be far more effective.

From the MBE perspective, the LP tightening up-
dates provide an iterative version of mini-bucket that

Algorithm 4 Algorithm JGLP

Input: Graphical model 〈X,D,F,
∑

〉; variable order o =
{X1, . . . , Xn}; parameter z.

Output: Upper bound on the optimum value
1: Place each function fα in its latest bucket in o
2: Build mini-bucket join graph (Algorithm 1)
3: Find the function of each mini-bucket as in (4)
4: Iterate to convergence / time-limit:
5: for all pairs qi, qj connected by an edge do
6: Find common variables, S = var(qi) ∩ var(qj)
7: Find the max-marginals of each mini-bucket

qk: γk = maxvar(qk)\S(Fk), k = i, j
8: Update functions in both mini-buckets

qi: Fi ← Fi −
1
2
(γi − γj)

qj : Fj ← Fj +
1
2
(γi − γj)

9: end for

10: Return: Ĉ∗ =
∑

i
maxXi Fi(Xi)

attempts to compensate for the variable copying re-
laxation. From this view it is most closely related to
non-iterative cost-shifting procedures during the mini-
bucket construction phase (Rollon & Larrosa, 2006).
Another iterative “relax and compensate” approach
was recently proposed in (Choi & Darwiche, 2009),
but did not explicitly maintain a re-parameterization
or use coordinate descent (thus could fail to converge).

4 MBE-MM

While the iterative nature of JGLP is appealing, it
can have significant additional time and space over-
head compared to MBE. We would thus also like to
consider a single-pass MBE-like algorithm in which
LP tightening is performed only within each bucket.
We call the resulting algorithm mini-bucket with max-

marginal matching, or MBE-MM.

MBE-MM proceeds by following the standard mini-
bucket downward pass. However, when each mini-
bucket q

j
i ∈ Qi is processed, eliminating variable Xi,

we first perform an LP-tightening update to the mini-
bucket functions fq. For storage and computational
efficiency reasons, we perform a single update on all
buckets simultaneously, matching their max-marginals
on their joint intersection. See Algorithm 5.

Viewing the matching update as a cost-shifting proce-
dure, our MBE-MM algorithm is closely related to the
work of (Rollon & Larrosa, 2006), who also proposed
several dynamic cost-shifting updates for mini-bucket,
with different update patterns. Their updates corre-
spond to a “dynamic programming”-like heuristic that
shifts all cost into a single function. In our case, we
mimic the “balanced” cost shifting used by optimal it-
erative tightening but restrict our updates to a single
bucket rather than to the whole global problem.

It is worth noting that, although any max-marginal



Algorithm 5 Algorithm MBE-MM

Input: Graphical model 〈X,D,F,
∑

〉; variable order o =
{X1, . . . , Xn}; parameter z.

Output: Upper bound on the optimum value
1: Place each function fα in its latest bucket in o
2: for i← n down to 1 (processing bucket Bi) do
3: Partition functions in Bi into Qi = {q1i , . . . , q

p
i },

where each qki has no more than z + 1 variables.
4: Find the set of variables common to all the mini-

buckets: Si = S1
i ∩ · · · ∩ S

p
i , where Sk

i = var(qki )
5: Find the function of each mini-bucket

qki : Fik ←
∏

f∈qk
i
f

6: Find the max-marginals of each mini-bucket
qki : γik = maxvar(qk

i
)\Si

(Fik)

7: Update functions of each mini-bucket
qki : Fik ← Fik − γik + 1

p

∑

l
γil

8: Generate messages λk
i = maxXi Fik and place each

in the latest variable in var(qki )’s bucket.
9: end for

10: Return: The buckets and cost bound from B1

matching step strictly tightens the fully decomposed
bound (3) within each bucket, it does not necessarily
tighten the overall solution found by MBE (which cor-
responds to fully optimizing the MBE subtree’s edges);
thus MBE-MM is not guaranteed to be tighter than or-
dinary MBE. However, it is reasonable to expect that
the update will help, and in practice we find that the
bounds are almost always significantly improved (see
the experiments, Section 6).

Like “soft” arc-consistency, our algorithms are also
related to known methods in constraint satisfaction.
MBE(z) and JGLP(z), parameterized by a z-bound,
are analogous to directional z-consistency and full z-
consistency, respectively. Our algorithm MBE-MM
represents an intermediate step between these two,
and is analogous to an improvement of directional i-
consistency with full iterative relational consistency
schemes within each bucket (Dechter, 2003).

5 HEURISTICS FOR SEARCH

Mini-bucket is also a powerful mechanism for generat-
ing heuristics for informed search algorithms (Kask &
Dechter, 2001). The intermediate functions λ recorded
by MBE (see Figure 1(b)) are used to express upper
bounds on the best extension of any partial assign-
ment, and so can be used as admissible heuristics guid-
ing Best-First or Branch and Bound search.

Algorithms JGLP and FGLP do not produce heuris-
tic functions directly; we obtain one by applying MBE
to the modified (re-parameterized) functions output
by the iterative algorithms. As noted in Section 3,
for JGLP constructed with the same clique size bound
z, this additional pass does not change the value of

the bound. In contrast, applying MBE to the (much
smaller) functions re-parameterized by FGLP forms
new clusters and typically tightens the bound, yield-
ing a hybrid heuristic generator “FGLP+MBE”. Be-
ing a straightforward extension of “ordinary” MBE,
the MBE-MM algorithm also directly yields a heuris-
tic function suitable for informed search.

In our experiments (Section 6.2) we apply the output
bounds as admissible heuristics for one of the most
effective informed search approaches: the AND/OR
Branch and Bound (AOBB) algorithm (Marinescu &
Dechter, 2009a). This algorithm explores in a depth-
first manner an AND/OR search space that is defined
using a pseudo-tree arrangement of the problem’s pri-
mal graph and takes advantage of the problem decom-
position. The AND/OR search space is usually much
smaller than the corresponding standard OR search
space. AOBB keeps track of the value of the best so-
lution found so far (a lower bound on the optimal cost)
and uses this value and the heuristic function to prune
away portions of the search space that are guaranteed
not to contain the optimal solution in a typical branch-
and-bound manner. For details on AOBB guided by
MBE see (Marinescu & Dechter, 2009a).

6 EMPIRICAL EVALUATION

We investigate the impact of single-pass and iterative
LP-tightening in conjunction with the MBE scheme
for the task of finding the most probable explana-
tion (MPE) over Bayesian networks. Specifically, we
evaluate the performance of MBE-MM, Factor Graph
LP-Tightening (denoted FGLP) applied to the origi-
nal functions, and Join Graph LP-Tightening (JGLP)
which is applied over the mini-bucket-based join graph.
We compare these three algorithms against each other
and against “pure” MBE, both as stand-alone bound-
ing algorithms (Section 6.1) and as generator of heuris-
tic evaluation functions that guides search algorithms
such as Branch and Bound (Section 6.2).

Our benchmark problems include three sets of in-
stances from genetic linkage analysis networks (Fishel-
son & Geiger, 2002) (denoted pedigrees, type4b and
LargeFam) and grid networks from the UAI 2008 com-
petition (Darwiche et al., 2008). In total we evaluated
10 pedigrees, 10 type4 instances, 40 LargeFam in-
stances and 32 grid networks. The algorithms were
implemented in C++ (64-bit).

6.1 LP-TIGHTENING ALGORITHMS AS
BOUNDING SCHEMES

We compare the upper bounds’ accuracy obtained by
the non-iterative MBE and MBE-MM schemes and
against the iterative FGLP and JGLP schemes. The
iterative schemes ran for 5, 300 and 3600 seconds.
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Figure 2: Upper bound on optimum (log scale) as a function of time (sec). Non-iterative bounds MBE, MBE-MM
are shown for comparison.

Table 1: Upper bound (log scale) and runtime (# seconds) for a typical set of instances, z = 10 and z = 20.
FGLP is not affected by z. Lower values are better. OOM shows that the algorithm ran out of memory (4 Gb).
We report the number of variables n, largest domain size k, and the induced width w along the ordering used.

instance name n k w z MBE MBE-MM FGLP time cut-offs JGLP time cut-offs
5 300 3600 5 300 3600

UB/time UB/time UB UB UB UB UB UB

75-25-5 625 2 34 10
-15.4553/1 -18.4089/1

-16.6853 -16.6854 -16.6854
-20.0289 -20.8364 -20.8364

20 -17.4417/4 -20.0576/4 -20.0576 -20.1278 -20.7067

90-30-5 900 2 42
10 -8.2481/1 -10.2597/1

-10.2450 -10.2705 -10.2705
-11.8469 -12.9594 -13.015

20 -9.7424/7 -11.6004/7 -11.6004 -11.6942 -12.5259

90-34-5 1156 2 48
10 -8.42007/1 -10.3708/1

-9.65003 -9.69458 -9.69458
-12.3469 -13.2262 -13.2883

20 -9.58332/8 -12.3670/9 -12.3670 -12.5621 -13.1538

90-42-5 1764 2 60
10 -12.7401/1 -15.9680/1

-15.2480 -15.3653 -15.3653
-18.4100 -20.7714 -20.8136

20 -14.6136/13 -18.5487/14 -18.5487 -18.7679 -19.9705

largeFam4 11 51 1002 4 40
10 -201.136/1 -211.656/1

-201.582 -201.673 -201.673
-211.671 -216.500 -217.176

20 OOM OOM OOM OOM OOM

largeFam4 11 55 1114 4 38
10 -229.43/1 -242.489/1

-226.075 -226.328 -226.328
-242.657 -249.551 -250.453

20 OOM OOM OOM OOM OOM

largeFam4 12 51 1461 4 56
10 -218.229/2 -239.896/3

-217.564 -217.740 -217.740
-239.896 -245.900 -253.153

20 OOM OOM OOM OOM OOM

pedigree7 867 4 32
10 -105.854/1 -109.569/1

-110.179 -110.187 -110.187
-109.960 -110.810 -111.293

20 -108.011/33 -111.120/42 OOM OOM OOM

pedigree13 888 3 32
10 -69.0973/1 -70.0999/1

-71.8561 -71.8591 -71.8591
-70.4581 -71.9869 -72.0374

20 -69.8890/8 -71.1071/11 -71.1071 -71.1071 -71.3658

pedigree31 1006 5 30
10 -125.032/1 -126.629/1

-126.667 -126.678 -126.678
-126.644 -129.158 -129.277

20 OOM OOM OOM OOM OOM

pedigree41 885 5 33
10 -110.156/1 -114.858/1

-114.681 -114.681 -114.681
-115.050 -118.133 -118.419

20 -112.153/29 -117.638/37 OOM OOM OOM

type4 120 17 4302 5 23
10 -1128.22/1 -1203.08/1

-1049.34 -1049.85 -1049.86
-1203.21 -1221.21 -1223.69

20 -1235.94/18 -1237.95/21 -1237.95 OOM OOM

type4 170 23 6933 5 21
10 -1682.9/1 -1747.18/1

-1509.96 -1511.61 -1511.65
-1747.22 -1769.96 -1772.16

20 -1783.18/7 -1783.76/7 -1783.76 -1783.76 -1783.76

In Table 1 we present a subset of the results obtained
from all 4 instance sets for the z-bound values of z =
10 and z = 20. Results for z = 15 are similar and
are omitted for lack of space. Note, that the value of
z does not influence the results of FGLP, that runs
on the original functions. For every problem instance
described via its parameters (i.e., number of variables
n, largest domain size k, and induced width w), for
each algorithm we report the upper bound obtained
and the CPU time (or time-bound) in seconds.

We observe clearly that for all instances MBE-MM is
superior to pure MBE, since it produces considerably
more accurate bounds in a comparable time. For most
instances the MBE-MM bounds are also better than
pure FGLP (at the comparable point in time), espe-

cially for z = 20, but only if the memory required by
MBE-MM is not too high. As example behavior see
instances 75-25-5 and largeFam4 11 51.

Figure 2 illustrates the anytime performance of the
iterative schemes FGLP and JGLP. (Note that the
single-pass algorithms MBE and MBE-MM do not
change as a function of time.) As we expect, FGLP
improves the bound rapidly, but converges to a subop-
timal solution, while JGLP improves at a slower pace
but eventually produces the most accurate results.

From both the table and the figure we see that given
enough time and memory, JGLP produces the most
accurate bounds eventually. However, when time and
memory are bounded, MBE-MM can present a cost-
effective hybrid of bounded inference (as indicated by
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Figure 3: Lower bounds by the AOBB as a function of time (sec) for z=10, memory limit 3 Gb, timelimit 24h.

the cluster size) and bounded LP-tightening. Note
that the memory requirement of MBE-MM is slightly
less than the comparable JGLP, since some memory
can be freed by the single-pass algorithm; this behavior
is evidenced in pedigree7 and pedigree41 for z = 20.

6.2 LP-TIGHTENING ALGORITHMS AS
SEARCH GUIDING HEURISTICS

We also evaluated the impact of each of the bound-
ing schemes as a generator of heuristic evaluation
functions for the AOBB algorithm, as described
in Section 5. We tested four schemes: AOBB
guided by heuristics generated by pure MBE (denoted
“AOBB-MBE”), AOBB guided by MBE and max-
marginal matching heuristics (“AOBB-MBE-MM”),
AOBB whose heuristics are generated from FGLP fol-
lowed by MBE (“AOBB-FGLP+MBE”) and AOBB
guided by JGLP-produced heuristics (“AOBB-JGLP).
All the heuristic functions were generated in a pre-
processing phase, prior to search. The iterative FGLP
and JGLP algorithms were run for 30 seconds each.
The total time bound for AOBB with each of the
heuristics was set to 24 hours (including the pre-
processing), memory limit was 3 Gb, and the mini-
bucket z-bound parameters for generating the heuris-
tics was set to z ∈ {10, 15, 20}.

In Table 2 we show some of the results. For space rea-
sons and clarity we pick a representative set from the

full 92 instances. The table reports the total runtime
in seconds and the number of nodes expanded by each
of the AOBB schemes.

We see that, as expected, the heuristic generated
by MBE-MM are more cost-effective compared with
“pure” MBE, both in runtime and nodes expanded.
We see that the two iterative schemes are quite pow-
erful as heuristic generators. For most instances
FGLP+MBE presents a good balance3. But on some
hard instances and as long as memory is available
JGLP is the overall best-performing scheme.

We also observe the impact of the z bounds. As ex-
pected, with larger z we obtain more accurate heuris-
tics, but this increases the memory requirements (see,
for example, AOBB-JGLP on pedigree13).

Figure 3 shows the anytime behaviour of AOBB with
each heuristic, plotting the solution value found over
time (both on log scale) on four typical instances.
Higher values are better. As expected, AOBB-MBE-
MM has a more precise heuristic and consistently out-
puts better solutions faster compared with AOBB-
MBE. Algorithms AOBB-FGLP-MBE and AOBB-
JGLP perform very well as anytime schemes. We see

3We did not test a “pure” FGLP heuristic, since its
performance should be inferior to FGLP-MBE (FGLP fol-
lowed by pure MBE).



Table 2: Search time (seconds) / # nodes expanded for selected instances. FGLP and JGLP ran for 30 seconds.
“OOM” indicates that search ran out of memory (3Gb) and “— / —” that it ran out of time (24h). In bold we
highlight the best runtime for each instance, italics indicate the smallest search space explored.

Instances

AOBB-MBE(z) AOBB-MBE(z) AOBB-MBE(z)
AOBB-MBE-MM(z) AOBB-MBE-MM(z) AOBB-MBE-MM(z)

AOBB-FGLP+MBE(z) AOBB-FGLP+MBE(z) AOBB-FGLP+MBE(z)
AOBB-JGLP(z) AOBB-JGLP(z) AOBB-JGLP(z)

(n,k,w,h) z-bound=10 z-bound=15 z-bound=20
time / # nodes time / # nodes time / # nodes

pedigree instances

pedigree7 — / — 9404 / 1876188145 OOM
(867, 4, 32, 90) 2171 / 348425451 428 / 78953096 OOM

805 / 140665826 227 / 36619862 OOM
530 / 80597149 286 / 38350755 OOM

pedigree13 — / — 22799 / 5614980160 7229 / 1522450313
(888, 3, 32, 102) 66156 / 11726505961 8150 / 1441111422 704 / 164319080

5658 / 905160506 926 / 182970673 357 / 73658489

5911 / 1015334227 1939 / 366168237 OOM
pedigree31 — / — — / — OOM

(1006, 5, 30, 85) 61382 / 10617627744 3856 / 750931932 OOM
24896 / 3695993630 1033 / 188749113 OOM
2775 / 497649324 2337 / 435238548 OOM

type4 linkage instances

type4b 120 17 — / — — / — — / —
(4072, 5, 24, 319) — / — — / — 33 / 720778

— / — — / — 71 / 1168656
— / — — / — OOM

LargeFam linkage instances

largeFam3 11 53 — / — — / — OOM
(1094, 3, 39, 71) — / — — / — OOM

— / — 44663 / 8080262337 OOM
— / — 10292 / 1878168857 OOM

largeFam3 11 59 — / — — / — OOM
(1119, 3, 33, 73) — / — — / — OOM

— / — 59012 / 8098379409 OOM
— / — 22538 / 3025470612 OOM

binary grid instances

90-30-5 — / — 54415 / 10603123693 5853 / 1299094138
(900, 2, 42, 151) 8601 / 1790747055 423 / 97620783 12 / 1125656

5928 / 1084067942 337 / 67303699 47 / 2101919
350 / 62930133 31 / 28688 48 / 7493

90-42-5 — / — — / — — / —
(1764, 2, 60, 229) — / — 62051 / 8399774202 2471 / 340122171

— / — 17628 / 2349582057 651 / 93715978
40 / 1411953 134 / 13038792 OOM

90-50-5 — / — — / — — / —
(2500, 2, 74, 312) — / — — / — — / —

— / — — / — — / —
— / — 48781 / 4187198638 OOM

that they output the first solution later than the other
two schemes due to initial 30 seconds pre-processing
step. However, if desired, a shorter time bound for
computing heuristic can be used.

In summary, based on our empirical evaluation we
can conclude that some level of LP-tightening can sig-
nificantly improve the power of the MBE heuristics,
yielding an improved search, sometimes by orders of
magnitudes. The question of instance-based balance,
namely tailoring the right level of z-bound and LP-
tightening to the problem instance is clearly a cen-
tral issue and a direction of future research. Overall,
in this study we observed that MBE-MM always im-
proves upon MBE, using comparable time and mem-
ory, while FGLP quickly converges and is less memory-
consuming than the other schemes. On the other hand,
given sufficient time and memory JGLP produces the
tightest bound.

7 CONCLUSION

The paper presents the first systematic combination of
iterative cost-shifting updates with elimination-order

based clustering algorithms and provides extensive
empirical evaluation demonstrating its effectiveness.
Specifically, we present Join Graph Linear Program-
ming, a new bounding scheme for optimization tasks
in graphical models that combines MBE bounds with
LP-based cost-shifting or soft arc-consistency. Empir-
ically, larger clusters improved the iterative updates’
performance in all instances. We also demonstrated
that JGLP can often find better bounds faster than
LP-tightening on the original model, even for relatively
small z. Most importantly, we showed the algorithms’
ability to improve informed search algorithms; without
requiring significantly more computational power (for
fixed z) than classical MBE they can drastically reduce
the search space. Notably, the algorithm that used as
a heuristic generator all three cost-shifting schemes in
a sequence (FGLP+JGLP+MBE-MM) won the first
place in all optimization categories in this year’s Prob-
abilistic Inference Challenge.
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