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Abstract

We study the problem of complexity estima-
tion in the context of parallelizing an advanced
Branch and Bound-type algorithm over graph-
ical models. The algorithm’s pruning power
makes load balancing, one crucial element of ev-
ery distributed system, very challenging. We pro-
pose using a statistical regression model to iden-
tify and tackle disproportionally complex paral-
lel subproblems, the cause of load imbalance,
ahead of time. The proposed model is evalu-
ated and analyzed on various levels and shown
to yield robust predictions. We then demonstrate
its effectiveness for load balancing in practice.

1 INTRODUCTION

This paper explores the application of learning for im-
proved load balancing in the context of distributed search
for discrete combinatorial optimization over graphical
models (e.g., Bayesian networks, weighted CSPs). Specif-
ically, we consider one of the best exact search algorithms
for solving the MPE task over graphical models, AND/OR
Branch and Bound (AOBB) [12], ranked first and third, re-
spectively, in the UAI’06 and ’08 evaluations and winning
all three MPE categories of the 2011 PASCAL Inference
Challenge.

We adapt the established concept of parallel tree search [7],
where a search tree is explored centrally up to a certain
depth and the remaining subtrees are solved in parallel. In
the graphical model context we explore the search space
of partial instantiations up to a certain point and solve the
resulting conditioned subproblems in parallel.

The distributed framework is built with a grid computing
environment in mind, i.e., a set of autonomous, loosely
connected systems – notably, we cannot assume any kind of
shared memory or dynamic load balancing which most par-
allel or distributed algorithms build upon [1, 5, 7, 6]. The

primary challenge is therefore to determine a priori a set
of subproblems with balanced complexity, so that the over-
all parallel runtime will not be dominated by just a few of
them. In the optimization context, however, the use of cost
and heuristic functions for pruning makes it very hard to
reliably predict and balance subproblem complexity ahead
of time; in particular, structural parameters like the induced
width are not sufficient to differentiate subproblems.

Our suggested approach and the main contribution of this
paper is to estimate subproblem complexity by learning
a regression model over several subproblem parameters,
some static and structural (e.g., induced width, variable do-
main sizes), others dynamically extracted at runtime (e.g.
upper and lower bounds on the subproblem solution based
on the heuristic function).

A similar regression-based approach was developed in [11]
to predict the problem complexity (called “empirical hard-
ness”) of combinatorial auction instances; similarly the
successful SAT solverSATzillauses linear regression mod-
els to choose among a set of component solvers the one that
is predicted to be fastest for a given SAT instance [16].

Other general work on estimating search complexity goes
back to [10] and more recently [9], which predict the size
of general backtrack trees through random probing. Simi-
lar schemes were devised for Branch and Bound algorithms
[2], where search is run for a limited time and the par-
tially explored tree is extrapolated. These approaches typi-
cally require a substantial amount of probing, which is pro-
hibitively expensive in our setup, where many hundreds, if
not thousands of subproblems need to be evaluated quickly.

The contribution of the present paper lies in proposing and
studying a general learning approach for estimating sub-
problem complexity. In particular, we frame the problem
as statistical regression analysis, which allows us to lever-
age established, powerful techniques from machine learn-
ing and statistics. Motivated by different parallelization
scenarios, we distinguish three distinct levels of learning:
based on a single problem instance, based on a specific
class of problems, and based on a combination of problem



(a) (b) (c) (d)

Figure 1: (a) Example primal graph with six variables, (b) its pseudo tree along orderingA,B,C,D,E, F , (c) the corre-
sponding context-minimal AND/OR search graph, and (d) the parallel search space resulting from parallelizing at depth
d = 2 with eight independent subproblems.

classes. We evaluate, analyze, and contrast these three lev-
els on a sample set of more than 11,000 subproblem sam-
ples from four problem classes and demonstrate generally
robust prediction performance. We also demonstrate em-
pirically the model’s potential for improved load balancing.

The remainder of the paper is organized as follows: Section
2 summarizes the necessary background and outlines the
distributed AND/OR Branch and Bound algorithm. Sec-
tion 3 introduces the proposed regression model for com-
plexity estimation while Section 4 evaluates it on a variety
of instances from several problem classes. Section 5 pro-
vides selected parallel results that highlight the benefitsof
the proposed model and Section 6 concludes.

2 BACKGROUND

We assume the usual definitions of agraphical modelas a
set of functionsF = {f1, . . . , fm} over discrete variables
X = {X1, . . . , Xn} , its primal graph, induced graph, and
induced width.

2.1 AND/OR SEARCH SPACES

The concept of AND/OR search spaces has been intro-
duced as a unifying framework for advanced algorithmic
schemes for graphical models to better capture the struc-
ture of the underlying graph [3]. Its main virtue consists in
exploiting conditional independencies between variables,
which can lead to exponential speedups. The search space
is defined using apseudo tree, which captures problem de-
composition:

DEFINITION 1 (pseudo tree) Given an undirected graph
G = (X,E) , a pseudo treeof G is a directed, rooted tree
T = (X,E′) with the same set of nodesX , such that ev-
ery arc ofG that is not included inE′ is a back-arc inT ,
namely it connects a node inT to an ancestor inT . The
arcs inE′ may not all be included inE .

AND/OR Search Trees and Graphs : Given a graphical
model instance with variablesX and functionsF , its pri-

mal graph(X,E) , and a pseudo treeT , the associated
AND/OR search treeconsists of alternating levels of OR
and AND nodes. The structure of the AND/OR search tree
is based on the underlying pseudo treeT : the root of the
AND/OR search tree is an OR node labeled with the root
of T . The children of an OR nodeXi are AND nodes la-
beled with assignments〈Xi, xi〉 ; the children of an AND
node〈Xi, xi〉 are OR nodes labeled with the children ofXi

in T , representing conditionally independent subproblems.
Different nodes may root identical subproblems and can
be merged throughcaching, yielding anAND/OR search
graph of smaller size, at the expense of using additional
memory during search.

Given a graphical model, its primal graphG , and a guiding
pseudo treeT of heighth, the size of the AND/OR search
tree isO(n · kh) , while O(n · kw

∗

) bounds the AND/OR
search graph, wherew∗ is the induced width ofG over a
depth-first traversal ofT andk bounds the domain size [3].
Figure 1(a) shows an example problem primal graph with
six variables, Figure 1(b) depicts a pseudo tree along order-
ingA,B,C,D,E, F . Figure 1(c) shows the corresponding
AND/OR search graph.

AND/OR Branch and Bound : AND/OR Branch and
Bound (AOBB) is a state-of-the-art algorithm for solving
optimization problems over graphical models. Assuming
maximization, it traverses the AND/OR graph in a depth-
first manner while keeping track of a current lower bound
on the optimal solution cost. During expansion of a node
n, this lower boundl is compared with a heuristic upper
boundu(n) on the optimal solution belown – if u(n) ≤ l
the algorithm can prune the subproblem belown [12].

Mini-Bucket Heuristics : The heuristich(n) that we use
in our experiments is the Mini-Bucket heuristic. It is based
on Mini-Bucket elimination, an approximate variant of a
variable elimination scheme that computes approximations
to reasoning problems over graphical models [4]. A control
parameteri allows to trade accuracy of the heuristic against
its time and space requirements. It was shown that the inter-
mediate functions generated by the Mini-Bucket algorithm
MBE(i) can be used to derive a heuristic function that un-



derestimates the minimal cost solution to a subproblem in
the AND/OR search graph [12].

2.2 DISTRIBUTED AOBB & LOAD BALANCING

Our distributed implementation of AND/OR Branch and
Bound draws from the notion of parallel tree search [7, 6],
where a search tree is explored centrally up to a certain
depth and the remaining subtrees are solved in parallel. Ap-
plied to the search graph from Figure 1(c), for instance,
we could obtain eight independent subproblems as shown
in Figure 1(d), with a conditioning search space (in gray)
spanning the first two levels (variablesA andB).

We refer to the boundary between conditioning search
space and parallel subproblems as theparallelization fron-
tier. Its choice determines the shape and the number of
subproblems and is thus crucial for effective parallelload
balancing. Namely, it is known that for best parallel per-
formance we should spread the parallel workload evenly
across all available CPUs, while minimizing overhead.
Note that we assume independent worker machines, with
limited or very costly communication, hence dynamic load
balancing at runtime (cf. [6]) is not applicable.

Algorithm 1 shows pseudo code for our parallelization pol-
icy: the parallelization frontier is generated in a breadth-
first manner by iteratively selecting the current most com-
plex subproblem, estimated by a complexity estimator
N̂ , and splitting it into its immediate “sub-subproblems”,
which are in turn added to the frontier. This process is re-
peated until a desired number of subproblems is obtained,
at which point all subproblems are submitted to the dis-
tributed environment.

In the context of depth-first Branch and Bound, however,
determining the most complex subproblem is extremely
difficult and elusive. Due to the pruning power of the
algorithm, subproblem runtimes can differ greatly, even
when the underlying subgraph structure and the associated
asymptotic complexity guarantees (exponential in the in-
duced width of the AND/OR subspace) are identical.

To illustrate, consider the subproblem statistics of two par-
allel runs shown in Figure 2, where instead the paralleliza-
tion frontier is placed at a fixed depthd = 5 andd = 4,
respectively, yielding 64 and 144 subproblems (the hori-

Algorithm 1 Finding the parallelization frontier

Input: Pseudo treeT with root X0, subproblem countp, sub-
problem complexity estimator̂N .

Output: SetF of subproblem root nodes with|F | ≥ p .
1: F ← {〈X0〉}
2: while |F | < p :
3: n′ ← argmaxn∈F N̂(n)
4: F ← F \ {n′}
5: F ← F ∪ children(n′)
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Figure 2: Subproblem statistics for fixed-depth paralleliza-
tion frontier showing large variance in subproblem runtime.
Dashed lines mark 0, 20, 80, and 100 percentile.

zontal axis). In each case we see significant variance in
subproblem runtime. In fact, the overall runtime is dom-
inated exclusively by the handful of longest-running sub-
problems, with most other subproblems finishing long be-
fore (note the log scale). Detecting and mitigating this im-
balance ahead of time constitutes the central challenge in
this line of work, as we elaborate in the next sections.

3 LEARNING COMPLEXITIES
THROUGH REGRESSION

This section introduces our learning approach to subprob-
lem complexity prediction through regression analysis.
Previous work has investigated and evaluated various meth-
ods for balancing subproblem complexity, directly formu-
lating metrics using human expert knowledge [13, 14].
These metrics were relative in nature, i.e., they only al-
lowed comparison of one subproblem to another within a
given overall problem instance. In contrast, the present
work does not depend as heavily on expert knowledge and
gives absolute complexity estimates.

3.1 GENERAL METHODOLOGY

We identify a subproblem by its search space root node
n. We further measure the complexity of the subproblem
rooted atn through the size of its explored search space,
which is the number of node expansions required for its
solution, denotedN(n). We then aim to capture the expo-
nential nature of the search space size by modelingN(n)



as an exponential function of various subproblem features
φi(n) as follows:

N(n) = exp(
∑

i

λiφi(n)) (1)

The exponent has been chosen as a sum so that we can
consider the log complexity and obtain the following:

logN(n) =
∑

i

λiφi(n) (2)

Given a set ofm sample subproblems, finding suitable pa-
rameter valuesλj can thus be formulated as a well-known
linear regressionproblem, with themean squared error
(MSE) as the loss functionL(λ) we aim to minimize:

L(λ) =
1

m

m
∑

k=1

(

∑

i

λiφi(nk)− logN(nk)
)2

(3)

The MSE captures how well the learned regression model
fits the training data. In the context of load balancing for
parallelism we can consider a secondary metric, thePear-
son correlation coefficient(PCC), which is simply the nor-
malized covariance between the vector of subproblem com-
plexities and their estimates, normalized by the product of
each vector’s standard deviation. It is bounded by[−1, 1] ,
where 1 implies perfect linear correlation and -1 anticorre-
lation. Hence a value close to 1 is desirable, as it signifies a
model likely to correctly identify the hardest subproblems.

3.2 SUBPROBLEM FEATURES

Table 1 lists the full set of basic subproblem featuresφi

that we consider. This list was compiled based on our prior
knowledge of what aspects can affect problem complexity.
Features can be divided into two distinct classes: “static”,
which can be precompiled from the problem graph and
pseudo tree, and “dynamic” which are computed at run-
time, as the parallelization frontier decision is made (note
that none of the dynamic features are costly to compute).

3.3 SUBPROBLEM SAMPLE DOMAINS

In order to evaluate training and prediction error of the
proposed complexity model from a statistical learning per-
spective, we need to specify the sample domain over which
we will make predictions, for which we aim to generate a
model, and from which subproblem samples are assumed
to be drawn. In fact, in the following we consider three
incrementally more general levels of sample domains and
learning, corresponding to three different designs in the
context of parallelizing AOBB:

1. Learning per problem instance: The sample domain
is all subproblems from a single problem instance.
This corresponds to learning a new complexity model

Subproblem variable statistics (static):
1: Number of variables in subproblem.

2-6: Min, Max, mean, average, and std. dev. of variable
domain sizes in subproblem.

Pseudotree depth/leaf statistics (static):
7: Depth of subproblem root in overall search space.

8-12: Min, max, mean, average, and std. dev. of depth of
subproblem pseudo tree leaf nodes, counted from sub-
problem root.

13: Number of leaf nodes in subproblem pseudo tree.
Pseudo tree width statistics (static):
14-18: Min, max, mean, average, and std. dev. of induced

width of variables within subproblem.
19-23: Min, max, mean, average, and std. dev. of induced

width of variables within subproblem,when condition-
ing on subproblem root conditioning set.

Subproblem cost bounds (dynamic):
24: Lower boundL on subproblem solution cost, derived

from current best overall solution.
25: Upper boundU on subproblem solution cost, provided

by mini bucket heuristics.
26: DifferenceU − L between upper and lower bound, ex-

pressing “constrainedness” of the subproblem.
Pruning ratios (dynamic), based on running 5000 node ex-
pansion probe of AOBB:

27: Ratio of nodes pruned using the heuristic.
28: Ratio of nodes pruned due of determinism (zero proba-

bilities, e.g.)
29: Ratio of nodes corresponding to pseudo tree leaf.

Sample statistics (dynamic), based on running 5000 node ex-
pansion probe of AOBB:

30: Average depth of terminal search nodes within probe.
31: Average node depth within probe (denotedd̄ ).
32: Average branching degree, defined asd̄

√
5000 .

Various (static):
33: Mini bucketi-bound parameter.
34: Max. subproblem variable context size minus mini

bucketi-bound.

Table 1: Subproblem features for complexity estimation.

for every problem instance the parallel scheme en-
counters (e.g., we would learn separate models for the
two instances in Figure 2).

2. Learning per problem class: Take the domain to be
all subproblems of problems from a specific class. In
the parallelization context we learn a separate model
for every problem class we consider. For example, we
would learn a single model for all pedigree problems,
but a different model for other problem classes like
protein sidechain prediction.

3. Learning across problem classes: Take the sample
domain to be all subproblems of all problems from
several classes. Ultimately this could translate to a
parallel scheme that uses a single complexity model
for all problem classes under consideration.

These three levels are increasingly more general and thus
potentially more challenging for robust estimation. On the
other hand, they require increasingly less computational ef-



fort, since fewer distinct models need to be learned. Lastly,
they can present different trade-offs between pre-compiled
off-line learning and learning at runtime.

3.4 REGRESSION ALGORITHMS

We investigated a number of algorithms for fitting a lin-
ear model. Ordinary least squares (OLS) regression was
problematic due to numerical issues (near-singular matrix
inversion) and prone to overfitting (due to lack of regular-
ization) and we did not consider if further. Standard ridge
regression adds theL2-norm of the parameter vectorλ to
the regularized loss function through a termα(

∑

i λ
2

i )
1

2 ;
similarly, lasso regression [15], places anL1-penalty on
the parameter vector by adding the termα

∑

i |λi| . The
so-called “Elastic Net” combines both penalty terms [18].
In each case we followed the common approach of deter-
mining the regularization parameterα once through initial
cross validation and held it fixed subsequently.

In our experiments we found all methods to perform simi-
larly in terms of training and prediction errors, with a slight
advantage for the lasso method. We will therefore focus on
lasso learning. This method has the additional benefit of
“built-in” feature selection: learned models are relatively
sparse and thus compact, because theL1-regularization
pushes many parametersλi to zero [15].

3.5 NON-LINEAR REGRESSION

In addition to the purely linear regression analysis proposed
above, we also explored non-linear approaches. In particu-
lar, we took inspiration from [11], which reports improved
prediction performance usingquadratic feature expansion,
albeit in the context of combinatorial auctions. Quadratic
feature expansion, also referred to as “quadratic regres-
sion”, works by adding new features in the form of pairwise
products of the original features; namely, for every pair of
subproblem featuresφi, φj with i ≤ j, we create a new
featureφi · φj . We then perform linear regression on the
expanded feature set (629 in our case), thereby effectively
fitting a polynomial of 2nd degree. Results will be outlined
in Section 4.5.

Next we evaluate the proposed regression model on a vari-
ety of instances from several different problem classes.

4 EVALUATION AND ANALYSIS

The basis for our evaluation are 31 hard problem instances
from four classes: pedigree haplotyping problems, pro-
tein side-chain prediction ([17], named “pdb”), “large fam-
ily” genetic linkage instances, and grid networks (“75-2x-
x”). Summary statistics of the different problem classes
are given in Table 2. We note that all instances each take
several hours, if not days to solve using sequential AOBB.

domain M n k w h

pedigree 13 437 – 1272 3 – 7 17 – 39 47 – 102
pdb 5 103 – 172 81 10 – 15 24 – 43
largeFam 8 2569 – 3730 3 – 4 28 – 37 73 – 108
grid 5 624 – 675 2 37 – 39 111 – 124

Table 2: Summary statistics for problem classes used,M
gives the number of instances in the class.n denotes num-
ber of problem variables,k max. domain size,w induced
width,h pseudo tree height.

To compile a set of subproblem samples we revisit exper-
iments with fixed-depth parallelization (cf. Section 2.2):
we randomly choose not more than 500 subproblems from
a previously recorded fixed-depth parallel run for each in-
stance. This leaves us with about 11,500 sample subprob-
lems (approx. 40% pedigree, 25% protein, 25% largeFam,
10% grids), which is very reasonable for the number of
features we have (the variance of the trained linear model
scales withp/m, wherep is the number of features andm
the number of samples, cf. Section 7.3 in [8]).

The empirical evaluation is organized as follows: Sections
4.1 through 4.3 assess the prediction power of our proposed
linear regression complexity model according to the three
levels of learning outlined in Section 3.3. Section 4.4 in-
spects feature informativeness and Section 4.5 briefly in-
vestigates performance of the quadratic model. Section 4.6
provides a summary of the learning results.

Throughout this section results are presented as a log-log
scatter plot of actual versus predicted complexities, each
also containing mean squared prediction error (“MSE”, on
the test set) and Pearson correlation coefficient (“PCC”) as
well as mean squared training error (“TER”).

4.1 LEARNING PER PROBLEM INSTANCE

This first set of experiments is meant to determine the pre-
diction quality of a regression model that is learned for a
single instance only. To that end, we consider all subprob-
lem samples from a given problem instance and apply 5-
fold cross validation (i.e., partition the samples into 5 sub-
sets, then predict the complexities of each subset by learn-
ing a model on the remaining four).

Figure 3 presents scatter plots for six problem instances
from the different problem classes considered. We see that
results are good for the protein and largeFam instance and
still acceptable forpedigree19with slightly higher MSE.
Pedigree41has a relatively low MSE and good PCC, in
spite of the plot’s flat appearance. In case of the grid in-
stance75-26-9the model’s discriminatory power is likely
limited by the small number of subproblem samples in this
case. Finally, we note that the training error (“TER”) is
very close to the prediction error (“MSE”) in all cases, in-
dicating the absence of overfitting.
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Figure 3: Actual vs. predicted subproblem complexity
when learning per problem instance, using 5-fold cross val-
idation.

4.2 LEARNING PER PROBLEM CLASS

Secondly, we aim to assess how well we can learn a model
for an entire problem class. That is, we learn only once
from sample subproblems of instances from the problem
class in question. For testing we perform cross validation
on the level of problem instances. Namely, we predict the
subproblems of a given instance by fitting a model using
subproblem samples of other instances from the same class
– but not of the test instance itself.

Results are shown in Figure 4. Compared to Figure 3 in
the previous section, estimates for the grid and largeFam
instance are very similar and yield almost the same mean
squared error. MSE increases for the pedigree and large-
Fam instances, but the PCC and overall shape of the predic-
tions also remain similar, with the exception ofpedigree41
which sees both MSE and PCC deteriorate.

4.3 LEARNING MULTIPLE PROBLEM CLASSES

Lastly, we investigate how good a model we can learn from
subproblems of instances across multiple problem classes.
In particular, given a problem instance we learn a regres-
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Figure 4: Actual vs. predicted subproblem complexity
when learning per problem class.

sion model on the subproblems of all other instances, re-
gardless of their problem class.

Results are given in Figure 5, analogous to Figures 3 and 4.
The two pedigree problems see an improved MSE and PCC
(significantly forpedigree41), but the other instances suffer
from a slightly larger prediction error. However, we again
note that the overall shape of the plots remains roughly lin-
ear, which is also captured by high PCC values.

4.4 MOST INFORMATIVE FEATURES

Linear regression has the advantage that the resulting mod-
els can be straightforward to interpret. Namely, to assess
the informativeness of featureφi we simply look at the ab-
solute value of its coefficientλi in the regression model.
Assuming a normalized sample set, features with larger
absolute values contribute more to the predictions and are
thus intuitively more informative.

In addition, recall that theL1-regularization in lasso re-
gression implicitly performs feature selection by assigning
λi = 0 for somei. In our case, training on the entire sample
set (11,500 subproblem instances, regularization parameter
through cross-validation) yielded non-zeroλi for nine fea-
tures, as shown in in Table 3. In addition each feature’s
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Figure 5: Actual vs. predicted subproblem complexity
when learning across problem classes.

cost of omission(“coo”) as defined in [11] is given, which
measures the normalized difference between the prediction
error of the model with all nine features and the prediction
error of a model trained with the respective feature omitted
(using 5-fold cross-validation in all cases).

The particular set of features can be somewhat misleading,
however, since lasso regression tends to pick only one of
several highly correlated features. Yet it is useful to gain
a conceptual understanding. In particular, we observe that
the most informative features are dynamic, extracted from

Featureφi |λi| coo
Average branching degree in probe 0.57 100
Average leaf node depth in probe 0.39 87
Subproblem upper bound minus lower bound 0.22 17
Ratio of nodes pruned by heuristic in probe 0.20 27
Max. context size minus mini bucketi-bound 0.19 16
Ratio of leaf nodes in probe 0.18 10
Subproblem upper bound 0.11 7
Std. dev. of subproblem pseudo tree leaf depth0.06 2
Depth of subproblem root node in overall space0.05 2

Table 3: Features present in the linear model trained by
lasso regression, with their model coefficientsλi and their
cost of omission “coo” (normalized).

3 4 5 6 7 8 9 10
Actual complexity [log10]

3

4

5

6

7

8

9

10

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

pedigree19, p=1440, fixed d=6
MSE: 0.116
PCC: 0.962

TER: 0.116
3 4 5 6 7 8 9 10

Actual complexity [log10]
3

4

5

6

7

8

9

10

Pr
ed

ic
te

d 
co

m
pl

ex
ity

 [l
og

10
]

pedigree19, p=1440, fixed d=6
MSE: 2.074
PCC: 0.886

TER: 0.296

5 6 7 8 9
Actual complexity [log10]

5

6

7

8

9

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

largeFam3-11-59, p=200, fixed d=8
MSE: 0.017
PCC: 0.965

TER: 0.017
5 6 7 8 9 10 11

Actual complexity [log10]
5

6

7

8

9

10

11

Pr
ed

ic
te

d 
co

m
pl

ex
ity

 [l
og

10
]

largeFam3-11-59, p=200, fixed d=8
MSE: 3.309
PCC: 0.959

TER: 0.304

2 3 4 5 6 7 8 9 10 11
Actual complexity [log10]

2

3

4

5

6

7

8

9

10

11

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

pdb1a6m, p=511, fixed d=3
MSE: 0.045
PCC: 0.991

TER: 0.043
2 3 4 5 6 7 8 9 10 11

Actual complexity [log10]
2

3

4

5

6

7

8

9

10

11

Pr
ed

ic
te

d 
co

m
pl

ex
ity

 [l
og

10
]

pdb1a6m, p=511, fixed d=3
MSE: 0.224
PCC: 0.989

TER: 0.322

Figure 6: Example prediction results using a quadratic re-
gression model. Left: learning per problem instance, using
5-fold cross validation (cf. Fig. 3). Right: learning from
all problem classes (cf. Fig. 5).

a limited AOBB probe or based on the initial subproblem
bounds. Only the fifth feature, max. subproblem context
size minus mini-bucketi-bound, is static, with a normal-
ized cost of omission of only 16. This ties in to Section 2.2,
where we observed that the asymptotic complexity bound
of AOBB (based on static parameters) yields little informa-
tion in this context.

4.5 NON-LINEAR REGRESSION

Here we briefly summarize results from our investigation
of quadratic feature expansion, as detailed in Section 3.5.
Selected prediction results for three instances are shown
in Figure 6. On the left are results of learning per problem
instances, on the right we plot the prediction accuracy when
learning from all problem classes.

Comparing the plots on the left (per-problem learning) with
Figure 3, we note that quadratic regression does a bit better
than linear regression in terms of MSE and very similarly
with regards to PCC. In contrast to [11], however, we find
deteriorated prediction performance when comparing the
plots on the right with Figure 5: while the PCC value is



similar, the mean squared prediction error when learning
from multiple problem classes increases considerably for
pedigree19and largeFam3-11-59. Notably, however, the
training error remains fairly low in both cases, which is in-
dicative of overfitting. And indeed, with over 600 subprob-
lem features and just 31 different instances, the quadratic
regression model is likely to pick up specific characteris-
tics of each instance that hurt its predictive performance.

Since quadratic models are also more expensive to train and
lack the straightforward interpretability of a linear model,
we feel that the latter is better-suited for our purposes.

4.6 INTERPRETATION OF RESULTS

We have trained and evaluated our proposed regression
model on the three levels of learning laid out in Section 3.3,
trading off between the wider applicability of the learned
models and the challenges of capturing increasingly gen-
eral sample sets. Learning per problem instance provided
a good baseline but has limited relevance in practice, since
each new instance requires extensive sampling of subprob-
lems to train on. Learning per problem class is more rea-
sonable as the learned model can be reused within the given
problem class; our experiments showed good performance.
Finally, learning across classes is the most challenging as
the sample set is likely to be more diverse and have higher
variance, requiring more training samples; however, once
we learn a model it can be used throughout.

And indeed, our results in Section 4.3 show that, given our
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Figure 7: Subproblem statistics for regression-based par-
allelization (cf. fixed-depth parallelization in Fig. 2),p
denotes the number of subproblems.

0 100 200 300 400
Subproblems

101

102

103

104

So
lu
tio

n 
tim

e 
[s
ec
]

largeFam3-15-59, 200 CPUs, p=476, fixed d=8
Subproblem runtimes
Overall runtime

1391 sec overall
1362 max. job

Med: 22  Avg: 97.5  Stdv: 192.1

0 100 200 300 400
Subproblems

101

102

103

104

So
lu

tio
n 

tim
e 

[s
ec

]

largeFam3-15-59, 200 CPUs, p=476, regr.-based
Subproblem runtimes
Overall runtime

731 sec overall
716 max. job

Med: 58  Avg: 98.6  Stdv: 111.2

Figure 8: Subproblem statistics for fixed-depth (top) and
regression-based (bottom) parallelization onlargeFam3-
15-59instance.

substantial set of 11,500 subproblem samples, the model
can accommodate this most general level of learning across
problem classes without a noticeable penalty, at least for
the current collection of problem classes. A model learned
across classes is therefore also the basis for the next section,
where we demonstrate the benefit of robust complexity es-
timates in the context of distributed AOBB.

5 REGRESSION-BASED LOAD
BALANCING IN PRACTICE

In this section we present selected experimental results that
show the potential of the proposed regression models in
guiding the parallelization process, as described in Section
2.2 – a comprehensive empirical evaluation of Distributed
AOBB is beyond the scope of this paper. As noted above,
the regression model used for experiments in this section
was learned at the most general level, using all available
problem classes as discussed in Section 4.3 (but always ex-
cluding the test problem instance).

5.1 IMPROVING LOAD BALANCING

To demonstrate the profound impact the complexity predic-
tions can have on the load balancing of the parallel scheme,
we revisit the two parallel experiments presented in Section
2.2, Figure 2. In both cases the overall performance was
heavily dominated by very few long-running subproblems.

Figure 7 shows runtime statistics for parallel execution on
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Figure 9: Actual vs. predicted subproblem complexity
from the two parallel executions in Figure 7.

20 40 60 80 100
Number of CPUs

10

20

30

40

50

60

70

Pa
ra
lle
l s
pe

ed
up

pedigree41
pedigree19
LF3-15-59

Figure 10: Parallel speedup forpedigree41, pedigree19,
and largeFam3-15-59(cf. Figures 2, 7, and 8) as a func-
tion of the number of parallel CPUs. Dashed lines repre-
sent fixed-depth parallelization, solid lines correspond to
parallel runs guided by our regression model.

these instances, using the regression model for load bal-
ancing. Figure 8 gives an additional example on a large-
Fam instance. In all cases we see that the max. subprob-
lem runtime has been reduced greatly, close to 50% for
largeFam3-15-59(1,362 to 716 seconds for “max. job”
in Figure 8). We also note the drastically lower standard
deviation in subproblem runtimes.

In addition, Figure 9 compares the complexity estimates
obtained during the parallel execution with the actual
recorded values. In both cases we observe good prediction
error andpedigree19in particular also shows good PCC.

5.2 FACILITATING PARALLEL SPEEDUP

Figure 10 plots the parallel speedup for the three prob-
lem instances considered in Section 5.1 over the number
of parallel CPUs. For each instance we show (as a dashed
line) the speedup when using fixed-depth parallelization
and (with a solid line) the speedup of the parallel execu-
tion guided by the regression model.

Comparing each instance’s two entries reveals a clear ad-
vantage for the regression-based parallelization: it achieves
higher speedups, roughly by a factor of two, and seems to
plateau later, i.e. it is able to utilize a larger number of
parallel resources.

On the other hand, most curves appear to level off well be-
fore their theoretical limit. This indicates that further im-
provements are possible, even though “perfect” speedup is
unattainable in practice, since splitting a given subproblem
often yields components of widely varying size and large
jumps in complexity.

One way to mitigate these issues lies in increasing the sub-
problem granularity, i.e., setting the number of subprob-
lems to match several times the number of parallel CPUs.
However, this may add overhead in the general distributed
context and redundancies in the particular graphical model
context, which can negate potential gains in extreme cases.
Indeed, finding the right balance in granularity is a central
research issue in the field of distributed computing.

6 CONCLUSION & FUTURE WORK

We have presented a case study of complexity estimation
in the context of parallelizing the state-of-the-art sequential
optimization algorithm AND/OR Branch and Bound. The
pruning power of the algorithm makes parallel load balanc-
ing very challenging, leading to inefficiencies in practice.

To address these symptoms we have proposed to employ
statistical regression analysis in order to identify bottle-
necks for parallel performance ahead of time. In particular,
we developed a linear regression model that uses a variety
of static as well as dynamic features to predict a subprob-
lem’s complexity, enabling us to detect and split problem-
atic subproblems.

We identified three distinct levels of learning and evaluated
our proposed model accordingly, using more than 11,000
subproblem samples from 31 problem instances and four
problem classes. Results were good throughout, with gen-
erally low prediction error and high correlation coefficients.

In the context of our parallel scheme, we have shown how
the regression model can enable more effective load bal-
ancing and improved parallel speedup. This last set of re-
sults, however, also outlined opportunities for further im-
provements and future research, including varying the par-
allel granularity.

Future work with respect to learning of complexity esti-
mates will expand to more instances and additional prob-
lem classes. In that context we also plan to investigate how
our learned models perform on instances from previously
unseen problem classes. Furthermore, we are trying to de-
vise more subproblem features, for instance extracted di-
rectly from the cost function tables within a subproblem.
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