Load Balancing for Parallel Branch and Bound*

Lars Otten and Rina Dechter

Bren School of Information and Computer Sciences
University of California, Irvine
{l otten, dechter }@cs. uci . edu

Abstract. A strategy for parallelization of a state-of-the-art Branch and Bound
algorithm for weighted CSPs and other graphical model optimization tagks is
troduced: independent worker nodes concurrently solve subpngbimanaged

by a Branch and Bound master node; the problem cost functions eddagre-
dict subproblem complexity, enabling efficient load balancing, which usiaf

for the performance of the parallelization process. Experimental @aiuon up

to 20 nodes yields very promising results and suggests the effectivehése
scheme. The system runs on loosely coupled commodity hardwardifgingp
deployment on a larger scale in the future.

1 Introduction

This paper explores parallelization of combinatorial eyiziation tasks over graphical
models like weighted or soft CSP problems and Bayesian mktw&pecifically, we
consider a state-of-the-art exact optimization algoritdhND/OR Branch and Bound
(AOBB). AOBB, which exploits independencies and unifiahlbgroblems, has demon-
strated superior performance for these tasks compareditidr state-of the art exact
solvers [1] (e.g., it was ranked first or second in the UAY@®&d '08 evaluations).

To parallelize AOBB we use the established concept of pelttadie search [2] where
the tree is explored centrally up to a certain depth and tmai@ng subtrees are solved
in parallel. For graphical models this can be implementealghtforwardly by explor-
ing the search space of partial instantiations up to a cedepth and solving the re-
maining conditioned subproblems in parallel. This apphokas already proven suc-
cessful for likelihood computation in Superlink-Onlinehigh parallelizes cutset con-
ditioning for linkage analysis tasks [3]. Our work differs focusing on optimization
and in exploiting the AND/OR paradigm, leveraging additibaubproblem indepen-
dence for parallelism. Moreover, we use the power of BranmzhBound in a central
search space that manages (and prunes) the set of condifiohproblems.

The main difference however is that, compared to likelihooehputation, optimiza-
tion presents far greater challenges with respect to lo&hbimg. Hence the primary
challenge in search tree parallelization is to determiee‘titoff”, the parallelization
frontier. Namely, we need a mechanism to decide when to terminataatbinathe cen-
tral search space and send the corresponding subproblemaotdne on the network.

* This work is supported in part by NSF grant [1S-0713118 and NIHhgRO1-HG004175-02.
! hitp://ssli.ee.washington.edu/ bilmes/uaiO6InferenceEvaluation/
2 http://graphmod.ics.uci.edu/uaio8/

There are two primary issueft) Avoid redundanciescaching of unifiable subprob-
lems is lost across the independently solved subprobleemseghsome work might be
duplicated;(2) Maintain load balancingamong the grid resources, dividing the total
work equally and without major idling periods. While intrazding redundancy into the
search space can be counterproductive for both tasks, mladding is a far greater
challenge for optimization, since the cost function is eipld in pruning the search
space. Capturing this aspect is essential in predictingigeeof a subproblem and thus
the focus of this paper.

The contribution of this work is thus as follows: We suggegteallel B&B scheme
in a graphical model context and analyze some of its desagietoffs. We devise an
estimation scheme that predicts the size of future subpnabbased on cost functions
and learns from previous subproblems to predict the exteB&®B pruning within
future subproblems. We show that these complexity estgreaiable effective load dis-
tribution (which was not possible via redundancy analysily) and yield very good
performance on several very hard practical problem ingtsnsome of which were
never solved before. Our approach assumes the most genestdrrwvorker scenario
with minimal communication and can hence be deployed on ditomg of parallel
setups spanning hundreds, if not thousands of computetdwide. Our current em-
pirical results were obtained on 20 networked desktop caempubut we believe the
potential for scaling up is very promising.

Related work: The idea of parallelized Branch and Bound in general is nat bat
existing work often assumes a shared-memory architectuextensive inter-process
communication [2,4-7], or specific grid hierarchies [8]rlgaesults on estimating the
performance of search go back to [9] and more recently [10]clvpredict the size
of general backtrack trees through random probing. Sirsitiemes were devised for
Branch and Bound algorithms [11]: B&B is run for a limited gnand the partially
explored tree is extrapolated. Our method, on the other,liamibt based on sampling
or probing but only uses parameters available a priori afatrimation learned from
past subproblems which is facilitated through the use oftdépst branch and bound
to explore the master search space.

The paper is organized as follows: Section 2 provides nacgskefinitions and
concepts, while in Section 3 we outline our parallelized AD&heme and analyze
its parameters through a set of initial experiments. Secfiaerives the complexity
estimates required for load balancing, with which we obtaeexperimental results in
Section 5. Section 6 concludes.

2 Background

We assume the usual definitions ofjephical modelas a set of functions over dis-
crete variables, itsduced graphandinduced widthIn aweighted constraint problem
(WCSP), for instance, we aim to find a complete assignmenttivdiizes the sum of
all costs. Figure 1(a) depicts the primal graph of an exammblem with six variables.
The induced graph for the example problem along ordeding A, B,C,D, E, F' is
depicted in Figure 1(b), with two new induced edge, C) and (B, E). Its induced
width is 2. Note that different orderings will vary in themplied induced width; find-

i

>
©
-
1010CI0:0)

(@) (b)

Fig. 1: (a) Example primal graph with six variables, (b) itduced graph along ordering
d=A,B,C,D,E,F, (c) a corresponding pseudo tree, and (d) the resultingegtnt
minimal AND/OR search graph.

ing an ordering of minimal induced width is known to be NPehan practice heuristics
like minfill are used to obtain approximations [12].

2.1 AND/OR Search Spaces

The concept of AND/OR search spaces has recently been uteddas a unifying
framework for advanced algorithmic schemes for graphicatiefs to better capture
the structure of the underlying graph [13]. Its main virtwmsists in exploiting condi-
tional independencies between variables, which can leadgonential speedups. The
search space is defined usingseudo tregwhich captures problem decomposition:

Definition 1 (pseudo tree).Given an undirected grap&y = (X, F), apseudo treef
G is a directed, rooted treg@ = (X, E') with the same set of nodés, such that every
arc of G that is not included inE’ is a back-arc in7 , namely it connects a node A
to an ancestor irf . The arcs inE’ may not all be included ik .

AND/OR Search Trees : Given a graphical model instance with variabsand
functions F, its primal graph(X, E), and a pseudo treg, the associateAND/OR
search treeconsists of alternating levels of OR and AND nodes. OR nodesaheled
X; and correspond to the variablesih. AND nodes are labeledX;, «;), or justz;
and correspond to the values of the OR parent’s variablesfrheture of the AND/OR
search tree is based on the underlying pseudofrethe root of the AND/OR search
tree is an OR node labeled with the rootjof The children of an OR nod&; are AND
nodes labeled with assignmenfs,, x;) that are consistent with the assignments along
the path from the root; the children of an AND nod¥;, z;) are OR nodes labeled
with the children ofX; in 7, representing conditionally independent subproblems. It
was shown that, given a pseudo tfE®f heighth , the size of the AND/OR search tree
based o1V is O(n - k"), wherek bounds the domain size of variables [13].

AND/OR Search Graphs :In an AND/OR search tree, different nodes may root
identical subproblems. These nodes can be merged, yieddiAflD/OR search graph
of smaller size, at the expense of using additional memoringwsearch. Some merge-
able nodes can be identified by theimtexts

Definition 2 (context).Given the pseudo treg of an AND/OR search space, the con-
text of an OR nodeX; is the set of ancestors of; in 7, that are connected in the
primal graph toX; or its descendants (iff). The context oX; separates the subprob-
lem belowX; from the rest of the network. Merging all context-mergeatudes in the
AND/OR search tree yields tlentext minimalAND/OR search graph [13].

Proposition 1. [13] Given a graphical model, its primal grap&', and a pseudo tree
T , the size of the context-minimal AND/OR search grapR(s- k"), wherew* is
the induced width of G over a depth-first traversalfolnd & bounds the domain size.

Example 1.Figure 1(c) depicts a pseudo-tree extracted from the intigcaph in Fig-
ure 1(b) and Figure 1(d) shows the corresponding conteriamail AND/OR search
graph. Note that the AND nodes f@ have two children each, representing indepen-
dent subproblems and thus demonstrating problem decotigpo$iurthermore, the OR
nodes forD (with context{ B, C'}) andF' (context{ B, E'}) have two edges converging
from the AND level above them, signifying caching.

Weighted AND/OR Search Graphs :Given an AND/OR search graph, each edge
from an OR nodeX; to an AND nodex; can be annotated hyeightsderived from the
set of cost functiong” in the graphical model: the weightX;, x;) is the sum of all cost
functions whose scope includég§ and is fully assigned along the path from the root
to x; , evaluated at the values along this path. Furthermore, maa& in the AND/OR
search graph can be associated withakue the valuev(n) of a noden is the minimal
solution cost to the subproblem rootediatsubject to the current variable instantiation
along the path from the root te. v(n) can be computed recursively using the values
of n's successors [13].

2.2 AND/OR Branch and Bound

AND/OR Branch and Bound is a state-of-the-art algorithm golving optimization
problems over graphical models. Assuming a minimizatisk,td traverses the context-
minimal AND/OR graph in a depth-first manner while keepiragk of a current upper
bound on the optimal solution cost. It interleaves forwavdeexpansion with a back-
ward cost revision or propagation step that updates nodesgtapturing the current
best solution to the subproblem rooted at each node), wedilch terminates and the
optimal solution has been found [13].

3 Parallel Setup and Scheme

We assume a very general parallel framework in which aut@usnosts are loosely
connected over some network — in our case we use ten duabesktop computers,
with CPU speeds between 2.33 and 3.0 GHz, on a local Ethémet,allowing ex-
periments with up to 20 parallel nodes. We imposaaster-workethierarchy on the
computers in the network, where a specigsternode runs a central process to coor-
dinate theworkers which cannot communicate with each other. This generalahisd

Fig. 2: Application of the parallelization scheme to therepdée problem from Figure
1, with the master search space (marked gray) and eighténdiemt subproblems.

chosen to accommodate a wide range of parallel resourcesewlrect node communi-
cation is often either prohibitively slow or entirely imgsiile; it also facilitates flexible
deployment on geographically dispersed, heterogenesuosiees in the future.

The setup is similar to Superlink-Online [3], which has beeny successful in
using large-scale parallelism in likelihood algorithms fgenetic linkage analysis, or
SETI@home [14], which uses Internet-connected PCs ardwnaadrld to search through
enormous amounts of radio data. Like Superlink-Online system is implemented on
top of theCondorgrid middleware [15].

3.1 Parallel AND/OR Branch and Bound

Given a reasoning problem over a graphical model instandeaapseudo tre§, a
straightforward approach to parallelize the search pwiset® have the master process
explore astart pseudo tree

Definition 3 (start pseudo tree, parallelization frontier). Given an undirected graph
G = (X, E), a directed rooted tre§. = (X, E.), whereX,. C X, is astart pseudo
treeif it has the same root as, and is a subgraph of some pseudmtrée Given a
start pseudo treé. , we refer to the set of variables corresponding to the leafasoof
T, as theparallelization frontierEach variable in the parallelization frontier roots a
collection of subproblems characterized by value assignisn@long the path from the
root to the variable.

Example 2.Consider again the AND/OR search graph in Figure 1(d). Givestart
pseudo tree having and B, we can illustrate the parallelization scheme through Fig-
ure 2: the search space of the master process is marked inagihgach of the eight
independent subproblems rooted’abr E' can be solved in parallel. (Notice, however,
that some redundancy is introduced.)

3.2 Master Process Details

As a Branch and Bound algorithm, the master implements ngpansion (or explo-
ration) and propagation as outlined in the following (sed fbr details):

Table 1: Results on hard pedigree instances withl 5 workers (timeout 24 hours}y
is the number of problem variablgsthe max. domain sizey the induced width along
the chosen minfill ordering, antd the height of the corresponding pseudo trEgis
the solution time (in seconds) of sequential AOBB graphdean a single 3.0 GHz
processor. The parallel solution tirfig is given for varying cutoff depth.

[d=4Td=5]d=6] d=7 [d=8] d=9 [d=10[d=11]
inst. | Nkw] T T, T[] Tp| T,| Tp| Tp] T[] Ty
ped7 [1068 4 32 9(19,11421,334 8,343 4,038 3,352 3,610 4,560 4,675 7,073
ped131077 3 32 102 2,752 379 519 504 662 1,184 2,166 4,342 8,631
ped19 793 525 98 time|47,60030,78127,79727,32739,28247,56864,14881,103
ped311183 5 30 8%77,58068,47247,08946,83743,09741,28622,58215,23015,313
ped411062 5 33 10014,643 4,250 3,069 2,173 2,251 2,881 4,476 7,66211,159
ped511152 5 39 98 timel time|79,13165,818 time| time| time|72,21883,011

Exploration. The master process explores the AND/OR graph in a depth¥fast
ner guided by the start pseudo tfEe Upon expansion of a nodeit consults a heuris-
tic lower boundlb(n) to make pruning decisions, where the computation of the uppe
boundub(n) can take into account previous subproblem solution&(H) > ub(n),
the current subtree can be pruned. Exploration is haltesweeparallelization frontier
is reached. The master then sends the respective subpralilem by the subproblem
root variable and its context instantiation, to a workereod

Propagation. The master process also collects and processes subpraiilgiorss
from the worker nodes. Upon receipt of a solved subproblensgilution is assigned as
the value of the respective node in the master search spdaeeunrsively propagated
upwards towards the root, updating node values identicsg¢gmential AOBB.

Assuming a fixed number of workeps the master initially generates only the first
p subproblems; whenever a worker finishes, its solution ipggated and the central
exploration is resumed to generate the next subproblem.

3.3 Initial Experiments

The central decision is obviously where to place gagallelization frontier i.e., at
which point to cut off the master search space, which wiledeine subproblems sent
to worker nodes. And while in the end the parallel scheme Ishmake this decision
automatically, we investigate the performance of the gdrgarallelization approach
through initial experiments with the cutoff set manually.

We consider two sets of hard problems, pedigree networksreaglermind game
instances, both part of the UAI'08 evaluatioBased on a pseudo tree computed from
a minfill variable ordering, we enforce the parallelizatfoontier at constant deptti
in the master search space. Tméi bucketscheme is used to generate the heuristic
function [17].

Haplotyping Problems : The first set of problems consists of pedigree networks
from the area of human genetic analysis, specifically hgpiog problems. These can

3 http://graphmod.ics.uci.edu/uaio8/

Table 2: Results on Mastermind instances with 10 workers (columns as in Table 1).

[d=5 [d=6 [d=7 [d=8 [d=9 [d=10]
[instance [Nkw h[T T, T, T, Tp| Tp| Ty
mm.03.08.05-00113612 2 37 89 9,715 1,698 1,443 1,540 1,510 2,464 3,765
mm.03.08.05-001233612 2 37 81 7,568 2,386 2,149 1,430 1,498 1,649 2,720
7
7
9

mm.04.08.04-00002616 2 37 10,620 1,594 1,322 1,304 1,358 1,539 2,045
mm.06.08.03-00001814 2 31 7212,595 1,798 1,797 1,798 1,820 1,905 2,090
mm_10.08.03-00002606 2 47 9926,107 4,593 4,417 4,481 3,864 4,259 4,357
mm_10.08.03-00112558 2 47 10184,02913,41311,05311,27911,04410,88710,483
mm_10.08.03-00122558 2 47 82 5,630 2,420 1,357 1,362 1,361 1,473 1,294
mm_10.08.03-00132558 2 46 9910,385 4,229 4,339 2,489 2,460 2,413 2,536

be translated into a MPE task over a Bayesian network [18)ymoving to the log
domain, a weighted CSP. Looking at the results in Table 1p#rallel scheme seems
effective in almost all cases that we tested: for instaned1p can be solved in less than
10 minutes for several values @f whereas the sequential algorithm takes 45 minutes.
ped31 takes close to 22 hours on a single computer, while dral@l scheme with

d = 10 solves the problem in 4 hours and 15 minutes. Moreover, thalpbscheme
was able to solve two instances, ped19 and ped51, on whicketiigential algorithm
timed out after 24 hours.

Mastermind Problems : Table 2 documents experiments on some hard Mastermind
instances, witlly from a few hours to almost a day. Similar to the pedigree incsa,
parallelization enabled significant improvements in olletening time. For example,
with d = 7, mm.04.08_.04-0000 went from 3 hours to little over 22 minutes, while
mm_10_.08.03-0011 improved from more than 23 hours to about 3 hourd fer9.

As evidenced by the results above, our parallel schemeesdrigh potential, yet its
performance depends highly on the chosen parallelizatantiér. In making this deci-
sion we can identify the following three objectivg4) Minimize the redundancy and
the associated blowup in the search space, that is inheré¢iné tconditioning scheme
(cf. Example 2).(2) Balance the workload over all processing units, each of lwhic
should be utilized equally to optimize efficiency and imprawerall running time(3)
Minimize overhead resulting from grid communication ansloierce management. We
address the issue of redundancy next.

3.4 Practical Impact of Redundancy

Recall that enforcing the parallelization frontier carradce redundancies into the
search space, since caching is not possible across subprdidundaries. We have
therefore developed fine-grained expressions which userttierlying structure of the
graphical model to analytically capture the size of coodigid subproblems and the
overall parallel search space as a function of the cutofftdép- for space reasons we
have to refer to [16] for details.

We point out, however, that this reasoning only yields anenfmound on the search
space size since it accounts neither for the pruning in AO88Bar determinism, which
causes early backtracking. The latter can be partiallyrpm@ted as described in [19],

1E+17 1E+12
g 1E+16 & L1E+11 4 ped7: subprob. bound ——
S 1E+15 L 1E+10 ped31: subprob. bound -~ L
o 2 1E+09 4 . ped7: actual work =
N 1E+14 ; = "o Ly ped31: actual work --=-
@ M Q 1E+08 § Vs o aw 2 n Y] -.‘5
g 1E+13 { ped7: upperbound — F @ - Y W o -y Ny W
=8 ed31: upper bound - 1E+07 4 @ R I A WS Y S Y 2
8 p PP ! £ N] Bl e Y
= 1E+12 4 ped7: actual size = O 1E+06 4 i S gﬁ'\-’ A Y Eh!"ﬁ“ E
] ped31: actual size --=- o “ o @ty Ll
8 1E+11 F 2 100000 {™ = === ER| FTIAER b
2] - Q. p 0O =
T 16410 I S 10000 1 ; .
& 1E+09 Termmmte 19 1000 L a8 |

B 100 e e

2 5 6 7 8 9 10 11 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Global cutoff depth d Subproblem index
(a) (b)

Fig. 3: (a) Search space upper bound vs. actual number osp@gesubproblem bound
and actual number of nodes for the first 75 subproblems of edigpee instances.

yielding tighter bounds. As we show next, however, the méiortsoming of these

bounds in the context of Branch and Bound actually lies iir tiisregard of the cost

function, the guiding heuristic, and the associated puimifiect. Note that when we
modified our scheme to compute likelihood (e.g., probabdit evidence), in a very

preliminary evaluation we observed a far better connedbetiveen our redundancy-
based estimation and the true size of the search space. Udgests that structure-
based analysis can play an important role for parallelifikeihood queries, an aspect
we plan to investigate in the future.

Redundancy : To investigate the practical impact of redundancy, we rdedithe
number of nodes generated in the master search space asd alirsubproblems for
each parallel run; we also computed the upper bound from Edénded to account
for determinism [19]. Figure 3(a) contrasts these two messas a function of on
two pedigrees: for both instances we observe that the exypiahblowup of the upper
bound with increasing (due to redundancy) is not at all reflected in the actual numbe
of nodes generated — evidently the pruning of AOBB is powenfiough to compensate
for this and only a very small portion of the total search gpa@ctually explored.

Subproblem Bounds :In order to evaluate the obtained subproblem bounds with
respect to the size of the explored search space we recdrdatiimber of nodes ac-
tually generated by the worker and contrast it with the retype precomputed sub-
problem bound. Exemplary results for two pedigree instaiace shown in Figure 3(b),
where the first 75 subproblems are plotted in order of theiegation. We note that the
upper bound doesn’t change across subproblems; yet the aie exhibits significant
variance, going anywhere from a few thousand nodes (s@\viab$econds) to many
millions. Similar findings hold for other haplotyping and starmind instances.

In the following, we will thus focus on predicting the impaxtpruning in AOBB,
based on the problem’s cost function and the resulting uppeidower bounds.

4 Predicting Subproblem Size Using the Cost Function

In this section we derive a scheme for estimating the sizZeeoéxplored search space of
a conditioned subproblem using parameters associatedhgifiroblem’s cost function.
Our goal is to discriminate between “easy” and “hard” subpgms to allow efficient
load-balancing within our parallel scheme. In particubee, wish to enforce an upper
bound on the complexity of subproblems (measured in the eawiinodes expanded).

When considering a particular subproblem rooted at nodee propose to estimate
its complexityN (n) (i.e., the number of nodes AOBB explores to solve it) as atfanc
of the heuristic lower bound (n) as well as the upper bourdd(n) , which can be com-
puted based on earlier parts of the search space or througpaoximation algorithm
like local search; we will also use the heighin) of the subproblem pseudo tree. The
general expression we propose has the form:

(U(n)—=L(n))-h(n)*

N(n) = b= 1)
whereb, inc, anda are constants. In the following we provide the rationaletfos
functional form and demonstrate how the free parameterdedearned as the search
progresses.

4.1 Main Assumptions

We consider a node that roots the subprobler?(n). If the search space below
was a perfectly balanced tree of heidhtwith every node having exactlysuccessors,
clearly the total number of nodesi = (VP —1)/(b— 1) ~ bP .

However, even if the underlying search space is balancedpdintion expanded
by B&B, guided by some heuristic evaluation function, is:rtbe more accurate the
heuristic, the more focused around the optimal solutiohg#te search space will be.
In state-based search spaces it is therefore common to reezffectiveness in post-
solution analysis via theffective branching factadefined ag= VN whereD is the
length of the optimal solution path add is the actual number of nodes generated [20].

Inspired by this approach, for a subproblem rooted ate adopt the idea of ap-
proximating the explored search space by a balanced treexqmdss its size through
N(n) = b(n)P™) . However, in place of the optimal solution path length (vihéor-
responds to the pseudo tree height in our case), we propadetetpretD(n) as the
average leaf node depf(n) defined as follows:

Definition 4 (Average leaf node depth)Leti, ..., [; denote the leaf nodes generated
when solving subproblerf?(n). We define thaverage leaf node deptf P(n) to be
D(n) := % 71 dn(ly) , whered,, (I;) denotes the depth of leaf nodleelative to the
subproblem root.

Figure 4 plots the number of nodes generated within a subgroas a function of the
average leaf node depth for ped1B=€ 8) and ped31d = 10), respectively. We can
see a log-linear behavior (note the logarithmic vertica athus supporting the general
exponential form ofV(n) = b(n)PWN)

We next aim to expredgn) and D(n) as functions of the subproblem parameters
L(n),U(N), andh(n) (using other parameters is subject to future research).

4.2 Estimating the Effective Branching Factor

For the sake of simplicity we assume an under- 1e+10 poar T

lying, “true” effective branching factob that is le+09 ¢ * 7
constant for all possible subproblems. We feel 08| # "
this is a reasonable assumption since all subproB- ***" ¢ AR
lems are conditioned within the same graphicag > [, g4’]
model. Figure 4 exhibits some variance in com% 122222 i # T
plexity for fixed average leaf depth. This sug-g 20 25 30 35 40 45 50
gests modeling(n) as a random variable andé 1e+08
assuming a normal distribution we can take thg

mean as the constaht An obvious way to learn £ €07 ey %]
this parameter is then to average over the ef-
fective branching factors of previous subprob-
lems, which is known to be the right statis- 100000 e
t?c for estimating the true average of a popula- 20 vaerazz Ieij‘sno dzodepf %0
tion.

Estimating b for new Subproblem P(n): Fig.4: Subproblem complexity vs.
Given a set of already solved subprobleneverage leaf depth.
P(ny),...,P(n,), we can computeD(n;) and
derive effective branching degre&s:;) = 7/ N(n;) for all i. We then estimaté
throughb = 2 37 b(n,).

x| ped13 (d=8)

1le+06

4.3 Deriving and Predicting Average Leaf Depth

With each subproblen?(n) rooted at a node we associate a lower bouddn) based

on the heuristic estimate and an upper boliid) derived from the best solution from
previous subproblerfisBoth L(n) andU (n) are known before we start solving(n).

We can assumé&(n) < U(n), since otherwise itself could be pruned anf(n) was
trivially solved. We denote withh(n') andub(n’) the lower and upper bounds of nodes
n/ within the subproblenP(n) at the time of their expansion and similarly assert that
Ib(n') < ub(n') for any expanded nod¢.

Since the upper bound is derived from the best solution faméar it can only
improve throughout the search process. Furthermore, dsgluarmonotonic heuristic
function (that provides for any nod€ a lower bound on the cost of the best solution
path going through'), the lower bounds along any path in the search space are non-
decreasing and we can state that any nddexpanded withinP(n) satisfies:

L(n) <1b(n') < ub(n’) <U(n)

Consider now a single path withiR(n), from n down to leaf nodé;, , and denote
it by 7, = (ng, ... ,n;l"(lk)) , Wheren(= n andd,,(I) is again the depth df, with
respect to: (and hencen;n(lk) = [,). We will write [b; for ib(n}) andub; for ub(n}),
respectively, and can state thiét > 1b;_; andub; < ub;_; forall1 <4 < d,(l;) (note

% In the following we assume a graphical model with addition as the combinafierator (a
weighted CSP, for instance). Adaption to multiplication is straightforward.

thatiby = L(n) anduby = U(n)). An internal node:’ is pruned ifflb(n’) > ub(n’)

or equivalentlyub(n’) — lb(n’) < 0, hence we consider the (non-increasing) sequence
of values(ub; — 1b;) along the pathr, ; in particular we are interested in the average
change in value from one node to the next, which we capturelas\k:

Definition 5 (Average path increment). The average path increment af;, within
P(n) is defined by the expression:

dn (lk)
inc(mg) = — (ubj—1 — lb—1)) 2
i=1
We note that, is a leaf node and assurfmebdn(lk) —1Ibg,,)) = 0, so the sum reduces
to (U(n) — L(n)). Thus rewriting Expression 2 fat,, () and averaging to geb(n)
as in Definition 4 yields:

1
D(n) = -
(n) = (U ; Z el (3)
k=1
We now defingnc(n) of P(n) throughinc(n)=t = 1 7 —L_ with which Ex-

k 1 uLc(ﬂ'k
pression 3 becomeB(n) = (U(n) — L(n)) - inc()~1, namely an expression for
D(n) as aratio of the distance between the initial upper and Iboands andnc(n) .
Note that in post-solution analysi3(n) is known andnc(n) can be computed directly,
without considering each; .

One more aspect that has been ignored in the analysis safarhich is likely to
have an impact, is the actual heigt{in) of the subproblem pseudo tree. We therefore
propose to scalé(n) by a factor of the formh(n)*; in our experiments we found
a = 0.5 to yield good resulfs The general expression we obtain is thus:

D) _ U = Lin)
h(n)e inc(n)

Predicting D(n) for New Subproblem P(n): Given previously solved subprob-
lemsP(ny),...,P(n,), we need to estimatec(n) in order to predictD(n) . Namely,
we computenc(n;) = (U(n;) — L(n;)) - h(n;)® - D(n;)~* for 1 <4 < r. Assuming
again thatnc(n) is a random variable distributed normally we take the sarapéeage
to estimatenc* = 1 37| inc(n;) . Using Equation 4, our prediction fdp(n) is

Bin) — () = L(m) - ki)

(4)

(5)

inc
Predicting N (n) for a New Subproblem P(n) : Given the estimatesandinc as
derived above, we will predict the number of nodé§.) generated withirP(n) as

N(n) = bPm (6)

The assumption thathc and b are constant across subproblems is clearly too strict,
more complex dependencies will be investigated in the &utbor now, however, even
this basic approach has proven to yield good results, as memigrate in Section 5.

5 Eventuallya could be subject to learning as well.

Table 3: Results of the automated parallel scheme (pedt5, mm: p = 10). T is the
parallel time from Tables 1/Z s s the time of sequential AOBB with one iteration of
SLSto find an initial bound]; the best-performing fixed-depth cutoff from Tables 1/2,
andT,.:, the overall solution time of the automated parallel scheme.

[instance [Ts[Tsrs]| T, [Tauto][instance [Ts[Tscs] Tp[Tauto]
ped7 19,11419,309 3,352 2,783|ped31 77,58037,84415,230 3,910
ped13 2,752 2,796 379 359 |ped4l 14,64313,999 2,173 2,251
ped19 time| time|27,37210,611|ped51 time| time|65,81859,914

mm_03.08.05-0011 9,715 2,943 1,443 1,085|mm.10.08.03-000026,103 9,876 3,864 7,604
mm.03.08 05-0014 7,568 2,030 1,430 1,584|mm.10.08.03-001184,92039,76110,044 6,846
mm_04.08.04-000010,620 7,807 1,304 3,07§|mm.10.08.03-0012 5,630 2,489 1,357 754
mm_06.08.03-000012,59§ 259 1,797 228|mm.10.08.03-001310,385 5,337 2,413 2,128

4.4 Parameter Initialization

To find an initial estimate of both the effective branchingtéa as well as the average
increment, the master process performs 15 seconds of dejsearch. It keeps track
of the largest subproblen?(ny) solved within that time limit and extractgn,) as
well asinc(ng) , which will then be used as initial estimates for the firstafetutoff
decisions. As an additional preprocessing step, we perfobmef run of stochastic
local search [21], which returns a solution that is not neagly optimal, but in practice
usually close to it. This is given as an additional input te thaster process to provide
initial lower bounds for the subproblem estimation.

5 Experiments

We ran our parallel AOBB scheme on the same set of problerarinss as in Section
3.3, using the above prediction scheme to make the cutofsidec The master pro-
cess, however, now makes the cutoff decisions fully autmalat: for each node: in
the master search space, the complexity?¢f) is estimated inV*(n) as described
above,; if this predicted value is less than a given threskiglthe subproblem below
this node is submitted to the grid for solving;f*(n) > T, the children of: are gen-
erated within the master process and the estimation issiwely applied. For this set of
experiments we set the threshdld= 12 - 102, which corresponds to roughly 20 min-
utes of processing time and was deemed to be a good comprbetiseen subproblem
granularity and parallelization overhead.

Pedigree Networks :Results on the set of complex pedigree instances are given in
Table 3. We can see that in all cases the automatic schematligast as good as the
best fixed cutoff, in some cases even better. Again it is inaorto realize that; in
Table 3 is the result of trying various fixed cutoff valuéand selecting the best one,
whereadl,,,;, requires no such “trial and error”. In case of ped31 the Slitilization
is quite effective for the sequential algorithm, cuttingmqautation from 21 to approx.
10 hours — yet the automated scheme improved upon this bytar faicalmost 10, to
just above one hour. Furthermore, for ped51 and in partiquéa19, both of which
could not be solved sequentiallfj,..., marks a good improvement oveéj; .

Mastermind Networks : Table 3 also includes results of the automated scheme
for the set of Mastermind instances. Here the SLS prepromehss a larger impact in

general, improving the sequential solution times considligr And again, in most cases
the automated scheme performs at least as well as the bebtitedf (determined after
trying various depths). There are, however, some notalgieptions like mm04.08.04,
whereT, ;. IS about two timeﬁ“; — our analysis here showed that the initial parameters
for the subproblem prediction were too far off. We are themetonfident that a future,
improved initialization scheme would alleviate these éssu

le+12 T T T T T T T 10
le+ll %

5.1 Subproblem Statistics

le+10 fooew ® @ @ @ @ @ 18

subproblem

Figures 5(a) and (b) contain de- 10400 | o om owm owm omm ocme ow
tailed subproblem statistics for the £ 1e+08 e simoee

first 75 subproblem generated by theg o A A B A R B B

Subproblem cutoff depth

automated parallelization scheme 0Nz 100000 |

ped31 and ped51, respectively. Eachy 0000 o
plot shows actual and predicted num-2 0 [R
ber of nodes as well as the (constant) 0 10 20 30 40 S0 60 70

Subproblem index

threshold that was used in the paral- (a) ped3l

lelization decision. The cutoff depth
of the subproblem root is depicted le+12 e ——T
against a separate scale to the right. le+ll |

We see that the prediction schem el

1le+09 -
does not give perfect predictions £ et} i

1e+07 [N

1 14

problem

112

B

ated within s
Subproblem cutoff depth

(which was expected), but it reli- i 8
ably captures the trend. Furthermore,s ;000 | ceEe
the actual subproblem complexities$ 10000 | actual pumber —— | 4
are all contained within an interval § [“Wedtd i
of roughly one order of magnitude, 0 10 20 30 40 50 60 70

Subproblem index

which is significantly more balanced
(b) ped51

than the results for fixed cutoff depths

(ct. Figure 3(b)). Fig.5: Subproblem statistics for the first 75

We.alsc.) pote the_‘t “perfect” I,Oa,dsubproblem of ped31 and ped51.
balancing is impossible to obtain in

practice, because subproblem complexity can vary greaiiy bne depth level to the
next along a single path. In particular, if a subproblem gitiold is deemed too com-
plex, most of this complexity might stem from only one of itsild subproblems at
depthd+1, with the remaining ones relatively simple — yet solved safgdy. In light
of this, we consider the above results very promising.

5.2 Performance Scaling

At this time we only have a limited set of computational reses at our disposal,
yet we wanted to perform a preliminary evaluation of how tlgstem scales with
p, the number of workers. We hence ran the automated paralense withp <
{5,10, 15,20} workers and recorded the overall solution time in each case.

Figure 6 plots the relative speedup of the overall 45~
solution in relation tg = 5 workers. For nearly all in- ol
stances the behavior is as expected, at times improving s
linearly with the number of workers, although not al—§
ways at a 1:1 ratio. It is evident that relatively complex> ~ * |
problem instances profit more from more resources; ig 25|
particular ped51 sees a two-, three-, and fourfold im§
provement going to twice, thrice, and four times the’
number of workers, respectively. For simpler instances,
we think the subproblem threshold of approx. 20 min- 1= —— ——
utes is too close to the overall problem complexity, Number of workers p
thereby inhibiting better scaling.

Fig.6: Performance relative
top = 5 workers.

6 Conclusion & Future Work

This paper presents a new framework for parallelization®DAOR Branch and Bound
(AOBB), a state-of-the-art optimization algorithm oveaghical models. In extending
the known idea of parallel tree search to AOBB, we show thatgating independent
subproblems can itself be done through an AOBB procedurerevbrevious subprob-
lem solutions are dynamically used as bounds for pruning sidwproblems. The un-
derlying parallel framework is very general and makes maliassumptions about the
available parallel infrastructure, making this approaielle on many different parallel
and distributed resources pools (e.g. just a set of netwlarkenmodity hardware).

We addressed the two central objectives of any parall@izacheme — minimizing
redundancy and optimizing load balancing — in the contexdwfAOBB algorithm.
In particular we analyzed the relation of the above aspectbe cutoff frontier, the
main parallelization parameter of our scheme. The veryiotsti communication in
the assumed parallel architecture makes this the centcidide, in contrast to more
forgiving, “work-stealing” approaches that can still coemgate later on [6, 7].

Experiments have shown that analytic expressions quangifiedundancy based
only on the structure of the underlying search space areffeatige in practice, since
performance is dominated by the pruning power of AOBB. Owufin this paper
is therefore on deriving predictions that better captuesprformance of AOBB using
the problem’s cost function, which underlies the algorighpruning decisions. We pro-
posed to estimate the size of the explored search spacearsixponential functional
form using certain subproblem parameters. We then propseldeme for learning this
function’s free parameters from previously solved subjamois. We have demonstrated
empirically the effectiveness of the estimates, leadinfatdoetter workload balancing
and improved solution times on hard problems.

We acknowledge that this initial estimation scheme, whiified and effective,
stillincludes some ad hoc aspects. We aim to advance thensdetaking into account
additional parameters and by providing firm theoreticaligis for our approach.

Besides extending the scheme itself, future work will alssyerthoroughly investi-
gate the issue of scaling, using larger grid setups than wbdtad access to so far. We

also need to conduct more experiments on hard problems fesious domains. Suit-

able ones must not be too easy to yield meaningful results evit advanced scheme,
yet not too complex to run experiments in a reasonable tie@dr which has proven
somewhat elusive.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Marinescu, R., Dechter, R.: AND/OR Branch-and-Bound sefamotombinatorial optimiza-
tion in graphical models. Artif. Intelll7316-17) (2009) 1457-1491

Grama, A., Kumar, V.: State of the art in parallel search technifjueBscrete optimization
problems. IEEE Trans. Knowl. Data Entfl(1) (1999) 28-35

. Silberstein, M., Geiger, D., Schuster, A., Livny, M.: Scheduliniged workloads in multi-

grids: The grid execution hierarchy. In: HPDC. (2006) 291-302

. Gendron, B., Crainic, T.G.: Parallel branch-and-bound algostiSurvey and synthesis.

Operations Resear@?(6) (1994) 1042—-1066

. Anstreicher, K., Brixius, N., Goux, J.P., Linderoth, J.: Solvinggéaquadratic assignment

problems on computational grids. Mathematical Programri{g) (2002) 563-588

. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based waalkrgten parallel constraint

programming. In Gent, I, ed.: CP. Volume 5732 of Lecture Notes im@der Science.,
Lisbon, Portugal, Springer-Verlag (September 2009) 226-241

. Jurkowiak, B., Li, C.M., Utard, G.: A parallelization scheme basedvork stealing for a

class of sat solvers. J. Autom. Reasora4gl) (2005) 73-101

. Aida, K., Natsume, W., Futakata, Y.: Distributed computing with hidmaal master-worker

paradigm for parallel branch and bound algorithm. In: CCGRID. 830%6-163

. Knuth, D.E.: Estimating the efficiency of backtrack programs. Matitees of Computation

29(129) (1975) 121-136

Kilby, P., Slaney, J., TBbaux, S., Walsh, T.: Estimating search tree size. In: AAAI, AAAI
Press (2006) 1014-1019

Corn&jols, G., Karamanov, M., Li, Y.: Early estimates of the size of brameti-bound
trees. INFORMS Journal on Computiag(1) (2006) 86—96

Kjaerulff, U.: Triangulation of graphs — algorithms giving small tati@te space. Technical
report, Aalborg University (1990)

Dechter, R., Mateescu, R.: AND/OR search spaces for grdphickels. Artif. Intell.171(2-
3) (2007) 73-106

Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Warén, D.: Seti@home: an experi-
ment in public-resource computing. Commun. A@8(11) (2002) 56-61

Thain, D., Tannenbaum, T., Livny, M.: Distributed computing iaqgtice: the Condor expe-
rience. Concurrency - Practice and Experieh@@-4) (2005) 323-356

Otten, L., Dechter, R.: Towards parallel search for optimizatiorraplgical models. In:
ISAIM. (2010)

Dechter, R., Rish, I.: Mini-buckets: A general scheme for bedrinference. Journal of the
ACM 50(2) (2003) 107-153

Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihoogblbéyping for general
pedigrees. Human HerediB9 (2005) 41-60

Otten, L., Dechter, R.: Refined bounds for instance-basedseamplexity of counting and
other #P problems. In: CP. (2008) 576-581

Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaafn (1998)

Hutter, F., Hoos, H.H., Btzle, T.: Efficient stochastic local search for MPE solving. In:
IJCAI. (2005) 169-174

