
Load Balancing for Parallel Branch and Bound⋆

Lars Otten and Rina Dechter

Bren School of Information and Computer Sciences
University of California, Irvine

{lotten,dechter}@ics.uci.edu

Abstract. A strategy for parallelization of a state-of-the-art Branch and Bound
algorithm for weighted CSPs and other graphical model optimization tasks isin-
troduced: independent worker nodes concurrently solve subproblems, managed
by a Branch and Bound master node; the problem cost functions are used to pre-
dict subproblem complexity, enabling efficient load balancing, which is crucial
for the performance of the parallelization process. Experimental evaluation on up
to 20 nodes yields very promising results and suggests the effectiveness of the
scheme. The system runs on loosely coupled commodity hardware, simplifying
deployment on a larger scale in the future.

1 Introduction

This paper explores parallelization of combinatorial optimization tasks over graphical
models like weighted or soft CSP problems and Bayesian networks. Specifically, we
consider a state-of-the-art exact optimization algorithm, AND/OR Branch and Bound
(AOBB). AOBB, which exploits independencies and unifiable subproblems, has demon-
strated superior performance for these tasks compared withother state-of the art exact
solvers [1] (e.g., it was ranked first or second in the UAI’061 and ’082 evaluations).

To parallelize AOBB we use the established concept of parallel tree search [2] where
the tree is explored centrally up to a certain depth and the remaining subtrees are solved
in parallel. For graphical models this can be implemented straightforwardly by explor-
ing the search space of partial instantiations up to a certain depth and solving the re-
maining conditioned subproblems in parallel. This approach has already proven suc-
cessful for likelihood computation in Superlink-Online, which parallelizes cutset con-
ditioning for linkage analysis tasks [3]. Our work differs in focusing on optimization
and in exploiting the AND/OR paradigm, leveraging additional subproblem indepen-
dence for parallelism. Moreover, we use the power of Branch and Bound in a central
search space that manages (and prunes) the set of conditioned subproblems.

The main difference however is that, compared to likelihoodcomputation, optimiza-
tion presents far greater challenges with respect to load balancing. Hence the primary
challenge in search tree parallelization is to determine the “cutoff”, theparallelization
frontier. Namely, we need a mechanism to decide when to terminate a branch in the cen-
tral search space and send the corresponding subproblem to amachine on the network.

⋆ This work is supported in part by NSF grant IIS-0713118 and NIH grant R01-HG004175-02.
1 http://ssli.ee.washington.edu/ bilmes/uai06InferenceEvaluation/
2 http://graphmod.ics.uci.edu/uai08/



There are two primary issues:(1) Avoid redundancies: caching of unifiable subprob-
lems is lost across the independently solved subproblems, hence some work might be
duplicated;(2) Maintain load balancingamong the grid resources, dividing the total
work equally and without major idling periods. While introducing redundancy into the
search space can be counterproductive for both tasks, load balancing is a far greater
challenge for optimization, since the cost function is exploited in pruning the search
space. Capturing this aspect is essential in predicting thesize of a subproblem and thus
the focus of this paper.

The contribution of this work is thus as follows: We suggest aparallel B&B scheme
in a graphical model context and analyze some of its design trade-offs. We devise an
estimation scheme that predicts the size of future subproblems based on cost functions
and learns from previous subproblems to predict the extent of B&B pruning within
future subproblems. We show that these complexity estimates enable effective load dis-
tribution (which was not possible via redundancy analysis only), and yield very good
performance on several very hard practical problem instances, some of which were
never solved before. Our approach assumes the most general master-worker scenario
with minimal communication and can hence be deployed on a multitude of parallel
setups spanning hundreds, if not thousands of computers worldwide. Our current em-
pirical results were obtained on 20 networked desktop computers, but we believe the
potential for scaling up is very promising.

Related work: The idea of parallelized Branch and Bound in general is not new, but
existing work often assumes a shared-memory architecture or extensive inter-process
communication [2, 4–7], or specific grid hierarchies [8]. Early results on estimating the
performance of search go back to [9] and more recently [10], which predict the size
of general backtrack trees through random probing. Similarschemes were devised for
Branch and Bound algorithms [11]: B&B is run for a limited time and the partially
explored tree is extrapolated. Our method, on the other hand, is not based on sampling
or probing but only uses parameters available a priori and information learned from
past subproblems which is facilitated through the use of depth-first branch and bound
to explore the master search space.

The paper is organized as follows: Section 2 provides necessary definitions and
concepts, while in Section 3 we outline our parallelized AOBB scheme and analyze
its parameters through a set of initial experiments. Section 4 derives the complexity
estimates required for load balancing, with which we obtainthe experimental results in
Section 5. Section 6 concludes.

2 Background

We assume the usual definitions of agraphical modelas a set of functions over dis-
crete variables, itsinduced graph, andinduced width. In aweighted constraint problem
(WCSP), for instance, we aim to find a complete assignment thatminimizes the sum of
all costs. Figure 1(a) depicts the primal graph of an exampleproblem with six variables.
The induced graph for the example problem along orderingd = A,B,C,D,E, F is
depicted in Figure 1(b), with two new induced edges,(B,C) and(B,E). Its induced
width is 2. Note that different orderings will vary in their implied induced width; find-



(a) (b) (c) (d)

Fig. 1: (a) Example primal graph with six variables, (b) its induced graph along ordering
d = A,B,C,D,E, F , (c) a corresponding pseudo tree, and (d) the resulting context-
minimal AND/OR search graph.

ing an ordering of minimal induced width is known to be NP-hard, in practice heuristics
like minfill are used to obtain approximations [12].

2.1 AND/OR Search Spaces

The concept of AND/OR search spaces has recently been introduced as a unifying
framework for advanced algorithmic schemes for graphical models to better capture
the structure of the underlying graph [13]. Its main virtue consists in exploiting condi-
tional independencies between variables, which can lead toexponential speedups. The
search space is defined using apseudo tree, which captures problem decomposition:

Definition 1 (pseudo tree).Given an undirected graphG = (X,E) , a pseudo treeof
G is a directed, rooted treeT = (X,E′) with the same set of nodesX , such that every
arc ofG that is not included inE′ is a back-arc inT , namely it connects a node inT
to an ancestor inT . The arcs inE′ may not all be included inE .

AND/OR Search Trees : Given a graphical model instance with variablesX and
functionsF , its primal graph(X,E) , and a pseudo treeT , the associatedAND/OR
search treeconsists of alternating levels of OR and AND nodes. OR nodes are labeled
Xi and correspond to the variables inX . AND nodes are labeled〈Xi, xi〉 , or justxi

and correspond to the values of the OR parent’s variable. Thestructure of the AND/OR
search tree is based on the underlying pseudo treeT : the root of the AND/OR search
tree is an OR node labeled with the root ofT . The children of an OR nodeXi are AND
nodes labeled with assignments〈Xi, xi〉 that are consistent with the assignments along
the path from the root; the children of an AND node〈Xi, xi〉 are OR nodes labeled
with the children ofXi in T , representing conditionally independent subproblems. It
was shown that, given a pseudo treeT of heighth , the size of the AND/OR search tree
based onT is O(n · kh), wherek bounds the domain size of variables [13].

AND/OR Search Graphs : In an AND/OR search tree, different nodes may root
identical subproblems. These nodes can be merged, yieldinganAND/OR search graph
of smaller size, at the expense of using additional memory during search. Some merge-
able nodes can be identified by theircontexts:



Definition 2 (context).Given the pseudo treeT of an AND/OR search space, the con-
text of an OR nodeXi is the set of ancestors ofXi in T , that are connected in the
primal graph toXi or its descendants (inT ). The context ofXi separates the subprob-
lem belowXi from the rest of the network. Merging all context-mergeablenodes in the
AND/OR search tree yields thecontext minimalAND/OR search graph [13].

Proposition 1. [13] Given a graphical model, its primal graphG , and a pseudo tree
T , the size of the context-minimal AND/OR search graph isO(n · kw∗

) , wherew∗ is
the induced width of G over a depth-first traversal ofT andk bounds the domain size.

Example 1.Figure 1(c) depicts a pseudo-tree extracted from the induced graph in Fig-
ure 1(b) and Figure 1(d) shows the corresponding context-minimal AND/OR search
graph. Note that the AND nodes forB have two children each, representing indepen-
dent subproblems and thus demonstrating problem decomposition. Furthermore, the OR
nodes forD (with context{B,C}) andF (context{B,E}) have two edges converging
from the AND level above them, signifying caching.

Weighted AND/OR Search Graphs :Given an AND/OR search graph, each edge
from an OR nodeXi to an AND nodexi can be annotated byweightsderived from the
set of cost functionsF in the graphical model: the weightl(Xi, xi) is the sum of all cost
functions whose scope includesXi and is fully assigned along the path from the root
to xi , evaluated at the values along this path. Furthermore, eachnode in the AND/OR
search graph can be associated with avalue: the valuev(n) of a noden is the minimal
solution cost to the subproblem rooted atn , subject to the current variable instantiation
along the path from the root ton . v(n) can be computed recursively using the values
of n’s successors [13].

2.2 AND/OR Branch and Bound

AND/OR Branch and Bound is a state-of-the-art algorithm forsolving optimization
problems over graphical models. Assuming a minimization task, it traverses the context-
minimal AND/OR graph in a depth-first manner while keeping track of a current upper
bound on the optimal solution cost. It interleaves forward node expansion with a back-
ward cost revision or propagation step that updates node values (capturing the current
best solution to the subproblem rooted at each node), until search terminates and the
optimal solution has been found [13].

3 Parallel Setup and Scheme

We assume a very general parallel framework in which autonomous hosts are loosely
connected over some network – in our case we use ten dual-coredesktop computers,
with CPU speeds between 2.33 and 3.0 GHz, on a local Ethernet,thus allowing ex-
periments with up to 20 parallel nodes. We impose amaster-workerhierarchy on the
computers in the network, where a specialmasternode runs a central process to coor-
dinate theworkers, which cannot communicate with each other. This general model is



Fig. 2: Application of the parallelization scheme to the example problem from Figure
1, with the master search space (marked gray) and eight independent subproblems.

chosen to accommodate a wide range of parallel resources, where direct node communi-
cation is often either prohibitively slow or entirely impossible; it also facilitates flexible
deployment on geographically dispersed, heterogeneous resources in the future.

The setup is similar to Superlink-Online [3], which has beenvery successful in
using large-scale parallelism in likelihood algorithms for genetic linkage analysis, or
SETI@home [14], which uses Internet-connected PCs around the world to search through
enormous amounts of radio data. Like Superlink-Online, oursystem is implemented on
top of theCondorgrid middleware [15].

3.1 Parallel AND/OR Branch and Bound

Given a reasoning problem over a graphical model instance and a pseudo treeT , a
straightforward approach to parallelize the search process is to have the master process
explore astart pseudo tree:

Definition 3 (start pseudo tree, parallelization frontier). Given an undirected graph
G = (X,E), a directed rooted treeTc = (Xc, Ec) , whereXc ⊂ X, is a start pseudo
tree if it has the same root as, and is a subgraph of some pseudo treeof G. Given a
start pseudo treeTc , we refer to the set of variables corresponding to the leaf nodes of
Tc as theparallelization frontier. Each variable in the parallelization frontier roots a
collection of subproblems characterized by value assignments along the path from the
root to the variable.

Example 2.Consider again the AND/OR search graph in Figure 1(d). Givena start
pseudo tree havingA andB, we can illustrate the parallelization scheme through Fig-
ure 2: the search space of the master process is marked in gray, and each of the eight
independent subproblems rooted atC orE can be solved in parallel. (Notice, however,
that some redundancy is introduced.)

3.2 Master Process Details

As a Branch and Bound algorithm, the master implements node expansion (or explo-
ration) and propagation as outlined in the following (see [16] for details):



Table 1: Results on hard pedigree instances withp=15 workers (timeout 24 hours).N
is the number of problem variables,k the max. domain size,w the induced width along
the chosen minfill ordering, andh the height of the corresponding pseudo tree.Ts is
the solution time (in seconds) of sequential AOBB graph search on a single 3.0 GHz
processor. The parallel solution timeTp is given for varying cutoff depthd.

d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11
inst. N k w h Ts Tp Tp Tp Tp Tp Tp Tp Tp

ped7 1068 4 32 9019,11421,334 8,343 4,038 3,352 3,610 4,560 4,675 7,073
ped131077 3 32 102 2,752 379 519 504 662 1,184 2,166 4,342 8,631
ped19 793 5 25 98 time 47,60030,78127,79727,32739,28247,56864,14881,103
ped311183 5 30 8577,58068,47247,08946,83743,09741,28622,58215,23015,313
ped411062 5 33 10014,643 4,250 3,069 2,173 2,251 2,881 4,476 7,662 11,159
ped511152 5 39 98 time time 79,13165,818 time time time 72,21883,011

Exploration. The master process explores the AND/OR graph in a depth-firstman-
ner guided by the start pseudo treeTc . Upon expansion of a noden it consults a heuris-
tic lower boundlb(n) to make pruning decisions, where the computation of the upper
boundub(n) can take into account previous subproblem solutions. Iflb(n) ≥ ub(n),
the current subtree can be pruned. Exploration is halted when the parallelization frontier
is reached. The master then sends the respective subproblem, given by the subproblem
root variable and its context instantiation, to a worker node.

Propagation.The master process also collects and processes subproblem solutions
from the worker nodes. Upon receipt of a solved subproblem, its solution is assigned as
the value of the respective node in the master search space and recursively propagated
upwards towards the root, updating node values identical tosequential AOBB.

Assuming a fixed number of workersp , the master initially generates only the first
p subproblems; whenever a worker finishes, its solution is propagated and the central
exploration is resumed to generate the next subproblem.

3.3 Initial Experiments

The central decision is obviously where to place theparallelization frontier, i.e., at
which point to cut off the master search space, which will determine subproblems sent
to worker nodes. And while in the end the parallel scheme should make this decision
automatically, we investigate the performance of the general parallelization approach
through initial experiments with the cutoff set manually.

We consider two sets of hard problems, pedigree networks andmastermind game
instances, both part of the UAI’08 evaluation3. Based on a pseudo tree computed from
a minfill variable ordering, we enforce the parallelizationfrontier at constant depthd
in the master search space. Themini bucketscheme is used to generate the heuristic
function [17].

Haplotyping Problems : The first set of problems consists of pedigree networks
from the area of human genetic analysis, specifically haplotyping problems. These can

3 http://graphmod.ics.uci.edu/uai08/



Table 2: Results on Mastermind instances withp=10 workers (columns as in Table 1).

d=5 d=6 d=7 d=8 d=9 d=10
instance N k w h Ts Tp Tp Tp Tp Tp Tp

mm 03 08 05-00113612 2 37 89 9,715 1,698 1,443 1,540 1,510 2,464 3,765
mm 03 08 05-00123612 2 37 81 7,568 2,386 2,146 1,430 1,498 1,649 2,720
mm 04 08 04-00002616 2 37 7910,620 1,594 1,322 1,306 1,358 1,539 2,045
mm 06 08 03-00001814 2 31 7212,595 1,798 1,797 1,798 1,820 1,905 2,090
mm 10 08 03-00002606 2 47 9926,102 4,593 4,417 4,481 3,866 4,259 4,357
mm 10 08 03-00112558 2 47 10184,02913,41311,05211,27911,04410,88710,483
mm 10 08 03-00122558 2 47 82 5,630 2,420 1,357 1,362 1,361 1,473 1,294
mm 10 08 03-00132558 2 46 9910,385 4,229 4,339 2,489 2,460 2,413 2,536

be translated into a MPE task over a Bayesian network [18] or,by moving to the log
domain, a weighted CSP. Looking at the results in Table 1, theparallel scheme seems
effective in almost all cases that we tested: for instance, ped13 can be solved in less than
10 minutes for several values ofd, whereas the sequential algorithm takes 45 minutes.
ped31 takes close to 22 hours on a single computer, while the parallel scheme with
d = 10 solves the problem in 4 hours and 15 minutes. Moreover, the parallel scheme
was able to solve two instances, ped19 and ped51, on which thesequential algorithm
timed out after 24 hours.

Mastermind Problems :Table 2 documents experiments on some hard Mastermind
instances, withTs from a few hours to almost a day. Similar to the pedigree instances,
parallelization enabled significant improvements in overall running time. For example,
with d = 7, mm 04 08 04-0000 went from 3 hours to little over 22 minutes, while
mm 10 08 03-0011 improved from more than 23 hours to about 3 hours ford = 9.

As evidenced by the results above, our parallel scheme carries high potential, yet its
performance depends highly on the chosen parallelization frontier. In making this deci-
sion we can identify the following three objectives:(1) Minimize the redundancy and
the associated blowup in the search space, that is inherent to the conditioning scheme
(cf. Example 2).(2) Balance the workload over all processing units, each of which
should be utilized equally to optimize efficiency and improve overall running time.(3)
Minimize overhead resulting from grid communication and resource management. We
address the issue of redundancy next.

3.4 Practical Impact of Redundancy

Recall that enforcing the parallelization frontier can introduce redundancies into the
search space, since caching is not possible across subproblem boundaries. We have
therefore developed fine-grained expressions which use theunderlying structure of the
graphical model to analytically capture the size of conditioned subproblems and the
overall parallel search space as a function of the cutoff depth d – for space reasons we
have to refer to [16] for details.

We point out, however, that this reasoning only yields an upper bound on the search
space size since it accounts neither for the pruning in AOBB nor for determinism, which
causes early backtracking. The latter can be partially incorporated as described in [19],



1E+08

1E+09

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

 4  5  6  7  8  9  10  11

O
ve

ra
ll 

se
ar

ch
 s

pa
ce

 s
iz

e 
[n

od
es

]

Global cutoff depth d

ped7: upper bound
ped31: upper bound

ped7: actual size
ped31: actual size

(a)

100
1000

10000
100000
1E+06
1E+07
1E+08
1E+09
1E+10
1E+11
1E+12

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70

S
ub

pr
ob

le
m

 s
iz

e 
[n

od
es

]

Subproblem index

ped7: subprob. bound
ped31: subprob. bound

ped7: actual work
ped31: actual work

(b)

Fig. 3: (a) Search space upper bound vs. actual number of nodes, (b) subproblem bound
and actual number of nodes for the first 75 subproblems of two pedigree instances.

yielding tighter bounds. As we show next, however, the main shortcoming of these
bounds in the context of Branch and Bound actually lies in their disregard of the cost
function, the guiding heuristic, and the associated pruning effect. Note that when we
modified our scheme to compute likelihood (e.g., probability of evidence), in a very
preliminary evaluation we observed a far better connectionbetween our redundancy-
based estimation and the true size of the search space. This suggests that structure-
based analysis can play an important role for parallelizinglikelihood queries, an aspect
we plan to investigate in the future.

Redundancy :To investigate the practical impact of redundancy, we recorded the
number of nodes generated in the master search space and across all subproblems for
each parallel run; we also computed the upper bound from [16], extended to account
for determinism [19]. Figure 3(a) contrasts these two measures as a function ofd on
two pedigrees: for both instances we observe that the exponential blowup of the upper
bound with increasingd (due to redundancy) is not at all reflected in the actual number
of nodes generated – evidently the pruning of AOBB is powerful enough to compensate
for this and only a very small portion of the total search space is actually explored.

Subproblem Bounds :In order to evaluate the obtained subproblem bounds with
respect to the size of the explored search space we recorded the number of nodes ac-
tually generated by the worker and contrast it with the respective precomputed sub-
problem bound. Exemplary results for two pedigree instances are shown in Figure 3(b),
where the first 75 subproblems are plotted in order of their generation. We note that the
upper bound doesn’t change across subproblems; yet the actual size exhibits significant
variance, going anywhere from a few thousand nodes (solvable in seconds) to many
millions. Similar findings hold for other haplotyping and Mastermind instances.

In the following, we will thus focus on predicting the impactof pruning in AOBB,
based on the problem’s cost function and the resulting upperand lower bounds.



4 Predicting Subproblem Size Using the Cost Function

In this section we derive a scheme for estimating the size of the explored search space of
a conditioned subproblem using parameters associated withthe problem’s cost function.
Our goal is to discriminate between “easy” and “hard” subproblems to allow efficient
load-balancing within our parallel scheme. In particular,we wish to enforce an upper
bound on the complexity of subproblems (measured in the number of nodes expanded).

When considering a particular subproblem rooted at noden, we propose to estimate
its complexityN(n) (i.e., the number of nodes AOBB explores to solve it) as a function
of the heuristic lower boundL(n) as well as the upper boundU(n) , which can be com-
puted based on earlier parts of the search space or through anapproximation algorithm
like local search; we will also use the heighth(n) of the subproblem pseudo tree. The
general expression we propose has the form:

N(n) = b
(U(n)−L(n))·h(n)α

inc (1)

whereb, inc, andα are constants. In the following we provide the rationale forthis
functional form and demonstrate how the free parameters canbe learned as the search
progresses.

4.1 Main Assumptions

We consider a noden that roots the subproblemP (n). If the search space belown
was a perfectly balanced tree of heightD, with every node having exactlyb successors,
clearly the total number of nodes isN = (bD+1 − 1)/(b− 1) ≈ bD .

However, even if the underlying search space is balanced, the portion expanded
by B&B, guided by some heuristic evaluation function, is not: the more accurate the
heuristic, the more focused around the optimal solution paths the search space will be.
In state-based search spaces it is therefore common to measure effectiveness in post-
solution analysis via theeffective branching factordefined asb= D

√
N whereD is the

length of the optimal solution path andN is the actual number of nodes generated [20].
Inspired by this approach, for a subproblem rooted atn we adopt the idea of ap-

proximating the explored search space by a balanced tree andexpress its size through
N(n) = b(n)D(n) . However, in place of the optimal solution path length (which cor-
responds to the pseudo tree height in our case), we propose tointerpretD(n) as the
average leaf node depth̄D(n) defined as follows:

Definition 4 (Average leaf node depth).Let l1, . . . , lj denote the leaf nodes generated
when solving subproblemP (n). We define theaverage leaf node depthof P (n) to be
D(n) := 1

j

∑j

k=1 dn(lk) , wheredn(li) denotes the depth of leaf nodei relative to the
subproblem rootn.

Figure 4 plots the number of nodes generated within a subproblem as a function of the
average leaf node depth for ped13 (d = 8) and ped31 (d = 10), respectively. We can
see a log-linear behavior (note the logarithmic vertical axis), thus supporting the general
exponential form ofN(n) = b(n)D(N) .

We next aim to expressb(n) andD(n) as functions of the subproblem parameters
L(n), U(N), andh(n) (using other parameters is subject to future research).



4.2 Estimating the Effective Branching Factor

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 20  25  30  35  40  45  50

N
um

be
r 

of
 n

od
es

 in
 s

ub
pr

ob
le

m

ped31 (d=10)

 100000

 1e+06

 1e+07

 1e+08

 20  25  30  35  40  45  50

Average leaf node depth

N
um

be
r 

of
 n

od
es

 in
 s

ub
pr

ob
le

m

ped13 (d=8)

Fig. 4: Subproblem complexity vs.
average leaf depth.

For the sake of simplicity we assume an under-
lying, “true” effective branching factorb that is
constant for all possible subproblems. We feel
this is a reasonable assumption since all subprob-
lems are conditioned within the same graphical
model. Figure 4 exhibits some variance in com-
plexity for fixed average leaf depth. This sug-
gests modelingb(n) as a random variable and
assuming a normal distribution we can take the
mean as the constantb. An obvious way to learn
this parameter is then to average over the ef-
fective branching factors of previous subprob-
lems, which is known to be the right statis-
tic for estimating the true average of a popula-
tion.

Estimating b for new Subproblem P (n) :
Given a set of already solved subproblems
P (n1), . . . , P (nr), we can computeD(ni) and
derive effective branching degreesb(ni) = D(ni)

√

N(ni) for all i. We then estimateb
throughb̂ = 1

r

∑r

i=1 b(ni) .

4.3 Deriving and Predicting Average Leaf Depth

With each subproblemP (n) rooted at a noden we associate a lower boundL(n) based
on the heuristic estimate and an upper boundU(n) derived from the best solution from
previous subproblems4. BothL(n) andU(n) are known before we start solvingP (n).
We can assumeL(n) < U(n), since otherwisen itself could be pruned andP (n) was
trivially solved. We denote withlb(n′) andub(n′) the lower and upper bounds of nodes
n′ within the subproblemP (n) at the time of their expansion and similarly assert that
lb(n′) < ub(n′) for any expanded noden′.

Since the upper bound is derived from the best solution foundso far it can only
improve throughout the search process. Furthermore, assuming a monotonic heuristic
function (that provides for any noden′ a lower bound on the cost of the best solution
path going throughn′), the lower bounds along any path in the search space are non-
decreasing and we can state that any noden′ expanded withinP (n) satisfies:

L(n) ≤ lb(n′) < ub(n′) ≤ U(n)

Consider now a single path withinP (n), from n down to leaf nodelk , and denote
it by πk = (n′

0, . . . , n
′

dn(lk)
) , wheren′

0 = n anddn(lk) is again the depth oflk with
respect ton (and hencen′

dn(lk)
= lk). We will write lbi for lb(n′

i) andubi for ub(n′

i),
respectively, and can state thatlbi ≥ lbi−1 andubi ≤ ubi−1 for all 1 ≤ i ≤ dn(lk) (note

4 In the following we assume a graphical model with addition as the combinationoperator (a
weighted CSP, for instance). Adaption to multiplication is straightforward.



that lb0 = L(n) andub0 = U(n) ). An internal noden′ is pruned ifflb(n′) ≥ ub(n′)
or equivalentlyub(n′)− lb(n′) ≤ 0 , hence we consider the (non-increasing) sequence
of values(ubi − lbi) along the pathπk ; in particular we are interested in the average
change in value from one node to the next, which we capture as follows:

Definition 5 (Average path increment). The average path increment ofπk within
P (n) is defined by the expression:

inc(πk) =
1

dn(lk)

dn(lk)
∑

i=1

((ubi − lbi)− (ubi−1 − lbi−1)) (2)

We note thatlk is a leaf node and assume(ubdn(lk)− lbdn(lk)) = 0 , so the sum reduces
to (U(n) − L(n)). Thus rewriting Expression 2 fordn(lk) and averaging to getD(n)
as in Definition 4 yields:

D(n) = (U(n)− L(n))
1

j

j
∑

k=1

1

inc(πk)
(3)

We now defineinc(n) of P (n) throughinc(n)−1 = 1
j

∑j

k=1
1

inc(πk)
, with which Ex-

pression 3 becomesD(n) = (U(n) − L(n)) · inc(n)−1 , namely an expression for
D(n) as a ratio of the distance between the initial upper and lowerbounds andinc(n) .
Note that in post-solution analysisD(n) is known andinc(n) can be computed directly,
without considering eachπj .

One more aspect that has been ignored in the analysis so far, but which is likely to
have an impact, is the actual heighth(n) of the subproblem pseudo tree. We therefore
propose to scaleD(n) by a factor of the formh(n)α ; in our experiments we found
α = 0.5 to yield good results5. The general expression we obtain is thus:

D(n)

h(n)α
=

U(n)− L(n)

inc(n)
(4)

Predicting D(n) for New SubproblemP (n) : Given previously solved subprob-
lemsP (n1), . . . , P (nr) , we need to estimateinc(n) in order to predictD(n) . Namely,
we computeinc(ni) = (U(ni)− L(ni)) · h(ni)

α ·D(ni)
−1 for 1 ≤ i ≤ r . Assuming

again thatinc(n) is a random variable distributed normally we take the sampleaverage
to estimateinc∗ = 1

r

∑r

i=1 inc(ni) . Using Equation 4, our prediction forD(n) is:

D̂(n) =
(U(n)− L(n)) · h(n)α

ˆinc
(5)

Predicting N(n) for a New SubproblemP (n) : Given the estimateŝb and ˆinc as
derived above, we will predict the number of nodesN(n) generated withinP (n) as:

N̂(n) = b̂ D̂(n) (6)

The assumption thatinc and b are constant across subproblems is clearly too strict,
more complex dependencies will be investigated in the future. For now, however, even
this basic approach has proven to yield good results, as we demonstrate in Section 5.

5 Eventuallyα could be subject to learning as well.



Table 3: Results of the automated parallel scheme (ped:p=15, mm:p=10). Ts is the
parallel time from Tables 1/2,TSLS the time of sequential AOBB with one iteration of
SLS to find an initial bound,T ∗

p the best-performing fixed-depth cutoff from Tables 1/2,
andTauto the overall solution time of the automated parallel scheme.

instance Ts TSLS T∗

p Tauto instance Ts TSLS T∗

p Tauto

ped7 19,11419,309 3,352 2,783 ped31 77,58037,84415,230 3,910
ped13 2,752 2,796 379 359 ped41 14,64313,999 2,173 2,251
ped19 time time 27,372 10,611 ped51 time time 65,818 59,915
mm 03 08 05-0011 9,715 2,943 1,443 1,085 mm 10 08 03-000026,102 9,876 3,866 7,604
mm 03 08 05-0012 7,568 2,030 1,430 1,584 mm 10 08 03-001184,92039,76110,044 6,846
mm 04 08 04-000010,620 7,807 1,306 3,076 mm 10 08 03-0012 5,630 2,489 1,357 754
mm 06 08 03-000012,595 259 1,797 228 mm 10 08 03-001310,385 5,337 2,413 2,128

4.4 Parameter Initialization

To find an initial estimate of both the effective branching factor as well as the average
increment, the master process performs 15 seconds of sequential search. It keeps track
of the largest subproblemP (n0) solved within that time limit and extractsb(no) as
well asinc(n0) , which will then be used as initial estimates for the first setof cutoff
decisions. As an additional preprocessing step, we performa brief run of stochastic
local search [21], which returns a solution that is not necessarily optimal, but in practice
usually close to it. This is given as an additional input to the master process to provide
initial lower bounds for the subproblem estimation.

5 Experiments

We ran our parallel AOBB scheme on the same set of problem instances as in Section
3.3, using the above prediction scheme to make the cutoff decision. The master pro-
cess, however, now makes the cutoff decisions fully automatically: for each noden in
the master search space, the complexity ofP (n) is estimated inN∗(n) as described
above; if this predicted value is less than a given thresholdT , the subproblem below
this node is submitted to the grid for solving; ifN∗(n) > T , the children ofn are gen-
erated within the master process and the estimation is recursively applied. For this set of
experiments we set the thresholdT = 12 · 108, which corresponds to roughly 20 min-
utes of processing time and was deemed to be a good compromisebetween subproblem
granularity and parallelization overhead.

Pedigree Networks :Results on the set of complex pedigree instances are given in
Table 3. We can see that in all cases the automatic scheme doesat least as good as the
best fixed cutoff, in some cases even better. Again it is important to realize thatT ∗

p in
Table 3 is the result of trying various fixed cutoff valuesd and selecting the best one,
whereasTauto requires no such “trial and error”. In case of ped31 the SLS initialization
is quite effective for the sequential algorithm, cutting computation from 21 to approx.
10 hours – yet the automated scheme improved upon this by a factor of almost 10, to
just above one hour. Furthermore, for ped51 and in particular ped19, both of which
could not be solved sequentially,Tauto marks a good improvement overT ∗

p .
Mastermind Networks : Table 3 also includes results of the automated scheme

for the set of Mastermind instances. Here the SLS preprocessing has a larger impact in



general, improving the sequential solution times considerably. And again, in most cases
the automated scheme performs at least as well as the best fixed cutoff (determined after
trying various depths). There are, however, some notable exceptions like mm04 08 04,
whereTauto is about two timesT ∗

p – our analysis here showed that the initial parameters
for the subproblem prediction were too far off. We are therefore confident that a future,
improved initialization scheme would alleviate these issues.

5.1 Subproblem Statistics

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 0  10  20  30  40  50  60  70
 0

 2

 4

 6

 8

 10

N
od

es
 g

en
er

at
ed

 w
ith

in
 s

ub
pr

ob
le

m

S
ub

pr
ob

le
m

 c
ut

of
f d

ep
th

Subproblem index

actual number
estimate

cutoff depth
threshold

(a) ped31

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 0  10  20  30  40  50  60  70
 0

 2

 4

 6

 8

 10

 12

 14

 16

N
od

es
 g

en
er

at
ed

 w
ith

in
 s

ub
pr

ob
le

m

S
ub

pr
ob

le
m

 c
ut

of
f d

ep
th

Subproblem index

actual number
estimate

cutoff depth
threshold

(b) ped51

Fig. 5: Subproblem statistics for the first 75
subproblem of ped31 and ped51.

Figures 5(a) and (b) contain de-
tailed subproblem statistics for the
first 75 subproblem generated by the
automated parallelization scheme on
ped31 and ped51, respectively. Each
plot shows actual and predicted num-
ber of nodes as well as the (constant)
threshold that was used in the paral-
lelization decision. The cutoff depth
of the subproblem root is depicted
against a separate scale to the right.

We see that the prediction scheme
does not give perfect predictions
(which was expected), but it reli-
ably captures the trend. Furthermore,
the actual subproblem complexities
are all contained within an interval
of roughly one order of magnitude,
which is significantly more balanced
than the results for fixed cutoff depths
(cf. Figure 3(b)).

We also note that “perfect” load
balancing is impossible to obtain in
practice, because subproblem complexity can vary greatly from one depth level to the
next along a single path. In particular, if a subproblem at depth d is deemed too com-
plex, most of this complexity might stem from only one of its child subproblems at
depthd+1, with the remaining ones relatively simple – yet solved separately. In light
of this, we consider the above results very promising.

5.2 Performance Scaling

At this time we only have a limited set of computational resources at our disposal,
yet we wanted to perform a preliminary evaluation of how the system scales with
p , the number of workers. We hence ran the automated parallel scheme withp ∈
{5, 10, 15, 20} workers and recorded the overall solution time in each case.



 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5  10  15  20

S
pe

ed
up

 v
s.

 5
 w

or
ke

rs

Number of workers p

ped51
ped31
ped7

ped19
ped41
ped13

Fig. 6: Performance relative
to p = 5 workers.

Figure 6 plots the relative speedup of the overall
solution in relation top = 5 workers. For nearly all in-
stances the behavior is as expected, at times improving
linearly with the number of workers, although not al-
ways at a 1:1 ratio. It is evident that relatively complex
problem instances profit more from more resources; in
particular ped51 sees a two-, three-, and fourfold im-
provement going to twice, thrice, and four times the
number of workers, respectively. For simpler instances,
we think the subproblem threshold of approx. 20 min-
utes is too close to the overall problem complexity,
thereby inhibiting better scaling.

6 Conclusion & Future Work

This paper presents a new framework for parallelization of AND/OR Branch and Bound
(AOBB), a state-of-the-art optimization algorithm over graphical models. In extending
the known idea of parallel tree search to AOBB, we show that generating independent
subproblems can itself be done through an AOBB procedure, where previous subprob-
lem solutions are dynamically used as bounds for pruning newsubproblems. The un-
derlying parallel framework is very general and makes minimal assumptions about the
available parallel infrastructure, making this approach viable on many different parallel
and distributed resources pools (e.g. just a set of networked commodity hardware).

We addressed the two central objectives of any parallelization scheme – minimizing
redundancy and optimizing load balancing – in the context ofour AOBB algorithm.
In particular we analyzed the relation of the above aspects to thecutoff frontier, the
main parallelization parameter of our scheme. The very restricted communication in
the assumed parallel architecture makes this the central decision, in contrast to more
forgiving, “work-stealing” approaches that can still compensate later on [6, 7].

Experiments have shown that analytic expressions quantifying redundancy based
only on the structure of the underlying search space are not effective in practice, since
performance is dominated by the pruning power of AOBB. Our focus in this paper
is therefore on deriving predictions that better capture the performance of AOBB using
the problem’s cost function, which underlies the algorithm’s pruning decisions. We pro-
posed to estimate the size of the explored search space usingan exponential functional
form using certain subproblem parameters. We then proposeda scheme for learning this
function’s free parameters from previously solved subproblems. We have demonstrated
empirically the effectiveness of the estimates, leading tofar better workload balancing
and improved solution times on hard problems.

We acknowledge that this initial estimation scheme, while justified and effective,
still includes some ad hoc aspects. We aim to advance the scheme by taking into account
additional parameters and by providing firm theoretical grounds for our approach.

Besides extending the scheme itself, future work will also more thoroughly investi-
gate the issue of scaling, using larger grid setups than whatwe had access to so far. We



also need to conduct more experiments on hard problems from various domains. Suit-
able ones must not be too easy to yield meaningful results with our advanced scheme,
yet not too complex to run experiments in a reasonable time frame, which has proven
somewhat elusive.

References

1. Marinescu, R., Dechter, R.: AND/OR Branch-and-Bound searchfor combinatorial optimiza-
tion in graphical models. Artif. Intell.173(16-17) (2009) 1457–1491

2. Grama, A., Kumar, V.: State of the art in parallel search techniquesfor discrete optimization
problems. IEEE Trans. Knowl. Data Eng.11(1) (1999) 28–35

3. Silberstein, M., Geiger, D., Schuster, A., Livny, M.: Scheduling mixed workloads in multi-
grids: The grid execution hierarchy. In: HPDC. (2006) 291–302

4. Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms: Survey and synthesis.
Operations Research42(6) (1994) 1042–1066

5. Anstreicher, K., Brixius, N., Goux, J.P., Linderoth, J.: Solving large quadratic assignment
problems on computational grids. Mathematical Programming91(3) (2002) 563–588

6. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint
programming. In Gent, I., ed.: CP. Volume 5732 of Lecture Notes in Computer Science.,
Lisbon, Portugal, Springer-Verlag (September 2009) 226–241

7. Jurkowiak, B., Li, C.M., Utard, G.: A parallelization scheme based on work stealing for a
class of sat solvers. J. Autom. Reasoning34(1) (2005) 73–101

8. Aida, K., Natsume, W., Futakata, Y.: Distributed computing with hierarchical master-worker
paradigm for parallel branch and bound algorithm. In: CCGRID. (2003) 156–163

9. Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of Computation
29(129) (1975) 121–136

10. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Estimating search tree size. In: AAAI, AAAI
Press (2006) 1014–1019

11. Cornúejols, G., Karamanov, M., Li, Y.: Early estimates of the size of branch-and-bound
trees. INFORMS Journal on Computing18(1) (2006) 86–96

12. Kjaerulff, U.: Triangulation of graphs – algorithms giving small totalstate space. Technical
report, Aalborg University (1990)

13. Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artif. Intell.171(2-
3) (2007) 73–106

14. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home: an experi-
ment in public-resource computing. Commun. ACM45(11) (2002) 56–61

15. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor expe-
rience. Concurrency - Practice and Experience17(2-4) (2005) 323–356

16. Otten, L., Dechter, R.: Towards parallel search for optimization in graphical models. In:
ISAIM. (2010)

17. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Journal of the
ACM 50(2) (2003) 107–153

18. Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihood haplotyping for general
pedigrees. Human Heredity59 (2005) 41–60

19. Otten, L., Dechter, R.: Refined bounds for instance-based search complexity of counting and
other #P problems. In: CP. (2008) 576–581

20. Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann (1998)
21. Hutter, F., Hoos, H.H., Stützle, T.: Efficient stochastic local search for MPE solving. In:

IJCAI. (2005) 169–174


