
Caching in Context-Minimal OR Spaces

Rina Dechter
Dept. of Computer Science
Univ. of California, Irvine

dechter@ics.uci.edu

Levi H. S. Lelis
Departamento de Informática

Universidade Federal de Viçosa, Brazil
levi.lelis@ufv.br

Lars Otten
Univ. of California, Irvine

(now at Google Inc.)
lotten@uci.edu

Abstract

In empirical studies we observed that caching can have very
little impact in reducing the search effort in Branch and
Bound search over context-minimal OR spaces. For example,
in one of the problem domains used in our experiments we
reduce only by 1% the number of nodes expanded when us-
ing caching in context-minimal OR spaces. By contrast, we
reduce by 74% the number of nodes expanded when using
caching in context-minimal AND/OR spaces on the same in-
stances. In this work we document this unexpected empirical
finding and provide explanations for the phenomenon.

Introduction
Some of the most successful solvers for finding optimal
solutions in graphical models (e.g., MPE/MAP, weighted
CSPs), explore the context-minimal AND/OR search graph
(defined below) using a Depth-first Branch and Bound (DF-
BnB) algorithm guided by mini-bucket heuristics (Mari-
nescu and Dechter 2009; Ihler et al. 2012). A commonly
used enhancement in this context is caching. Namely, when
a subproblem associated with a node is solved, the value
of its solution is cached so that, when the subproblem is
reached again from a different path, the solution is retrieved
from cache and the node is not explored redundantly. We call
this a cache hit. Avoiding redundant node exploration and
exploring the (context-minimal) AND/OR search graph, in
contrast to exploring the AND/OR search tree, was shown
to lead to substantial search speed up because the graph can
be much smaller than the tree, at the expense of some mem-
ory (Marinescu and Dechter 2009).

Theory suggests significant reduction in search effort in
both AND/OR and OR search spaces. In particular, the size
of the OR search tree is exponential on the problem’s num-
ber of variables n, while the context-minimal search graph
is exponential in its path-width pw, only. It is known that pw
can be far smaller than n (Bodlaender 2007).

Our Contributions
Despite the theoretical expected reduction in search ef-
fort due to searching OR graphs, compared with the tree,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we recently observed that when searching the OR context-
minimal graph using Depth-first Branch and Bound search,
that the number of cache hits was minimal, with almost no
difference between searching the OR tree and the OR graph.
We therefore conducted a systematic empirical study to in-
vestigate this observed phenomenon.

Our results on three benchmarks show that effective
caching (in terms of cache hits) is indeed almost non-
existent in OR graph search and the impact on the search
space is minimal. In contrast, when searching the AND/OR
space the reduction is highly significant: first, a substantial
reduction in size from OR trees to AND/OR trees; second,
a further notable reduction moving from AND/OR trees to
AND/OR graphs. Both of these reductions are in line with
the theory. In particular, our experiments show that the dif-
ference in performance between OR and AND/OR searches
is more pronounced than it seems to be implied by theory.

Background
A graphical model consists of a set of variables X , their fi-
nite domains D, and a set of non-negative real-valued cost
functions F defined on subsets of the variables, called func-
tion scopes. The function scopes imply a primal graph over
X where variables that appear in the same function scope
are connected. The variables in the primal graph can be or-
dered, yielding the induced graph, where each node’s earlier
neighbors are connected, with a certain induced width w. Cf.
(Dechter 2013) for details.

A pseudo tree of a graphical model captures problem de-
composition and guides the AND/OR search tree which
consists of alternating levels of OR and AND nodes: OR
nodes correspond to variables and AND nodes to value as-
signments of the OR parent’s variable, also rooting condi-
tionally independent subproblems. Edges are annotated by
values derived from the input functions F .

Certain nodes in the search tree root identical subprob-
lems and can be merged, based on their context, yielding an
AND/OR search graph. Intuitively, the context of a vari-
able is the subset of its ancestors that completely separates
the subproblem below from the rest of the graph. Thus as-
signing values to these variables uniquely determines the
search space below.

DEFINITION 1 (Context) Given a primal graph G and a

(a) Primal
graph.

(b) Induced
graph.

(c) Pseu-
dotree.

(d) Context-minimal AND/OR search graph
with AOBB pruning example.

Figure 1: Example problem with six variables, induced graph along
ordering A,B,C,D,E, F , corresponding pseudotree, and result-
ing AND/OR search graph with AOBB pruning example.

pseudo tree T of a graphical model, the context of a vari-
able Xi are the ancestors of Xi that are connected in G to
Xi or to descendants of Xi in T . An assignment of values
to Xi and its context variables is called a context instantia-
tion. A maximal context is one that’s not strictly included in
another context.

DEFINITION 2 (Induced width, path width) Given a pri-
mal graph G and a pseudo tree T of a graphical model, the
induced width of G relative to T is the maximum width of its
induced pseudo tree obtained by recursively connecting the
parents of each node, going from leaves to root along each
branch. In that process we consider both the tree arcs and
the arcs in the graphical model. If the pseudo-tree is a chain
its induced width is also called path width.

Example 1 Figure 2 shows the variable contexts along a
chain pseudo tree and corresponding OR graph. For in-
stance, the context of F is B,D,E. A and C do not appear
in the context of F because they are not connected to F or
the subproblem below.

AND/OR Branch and Bound (AOBB) (Marinescu
and Dechter 2009): AOBB traverses the context-minimal
AND/OR graph in a depth-first manner while keeping track
of the current lower bound on the optimal solution cost. A
node n is pruned if this lower bound exceeds a heuristic
upper bound on the solution to the subproblem below n.
Consider the example in Fig. 1d where the current lower
bound on the best solution at B is 0.8 · 0.5 = 0.4, and
since the upper bound at B = 1 is h = 0.3 we prune
B=1. In this work we employ the admissible and consis-
tent mini-bucket heuristic, parametrized by the i-bound that
trades of accuracy and complexity (Kask and Dechter 2001;
Dechter and Rish 2003).

Figure 2: Context minimal graph (full caching)

Dead- and Active-Caches
In a context-minimal AND/OR or OR search space (see
Figure 1 (d) and Figure 2) many of the nodes have only a
single path from the root to the node. These nodes should
not be cached since they will be reached at most once dur-
ing search; they are called dead-caches. For example (A =
1, B = 1, C = 1) in Figure 2 is a dead-cache. The set of
dead-caches can be determined using the following rule.
PROPOSITION 1 (Darwiche 2001) If X is the parent of Y
in the pseudo-tree T and if context(X) ⊂ context(Y)
then context(Y) is a dead-cache for any assignment to the
context variables. A variable is an active-cache if it is not a
dead-cache relative to T .

This can be translated to the following rule: when a vari-
able has a maximal context relative to a branch in the
pseudo tree (a path from root to a leaf), its child variable
on that branch is an active cache. Note that a context can be
maximal relative to a branch but not globally maximal.

Example 2 Inspecting the context of each variable in Fig-
ure 2 left, we see, moving from root to leaves, that ABC is a
maximal context (there is a single branch here). Thus E is an
active cache variable. In this example variables H,G,F,E
correspond to active caches while the rest are dead caches.

Any variable, dead-cache or not, contribute to the context-
minimal graph, a number of nodes exponential in its context
size. If a variable is an active-cache, its corresponding nodes
must be cached during search.

PROPOSITION 2 The number of nodes in the context-
minimal AND/OR search graph along pseudo-tree T , de-
noted N(T), and the number of active cache nodes denoted,
C(T), obey, N(T) =

∑
Xi∈X k|context(Xi)|+1 C(T) =∑

active(Xi)∈X k|context(Xi)|+1 We get the ratio R(T) =
C(T)
N(T) .

Computing N(T) and C(T) is easy once the pseudo-
tree is determined. The induced-width (see Definition 2) is
also very relevant here because the maximum context size
is bounded by the induced-width, w of the graph along a
pseudo-tree T (Definitions 1 and 2) we get:

THEOREM 1 (Dechter and Mateescu 2007) N(T) = O(n ·
kw+1).

We can show that the set of maximal contexts, yield a tree-
decomposition, called a join-tree decomposition (Dechter
2013). This allows characterizing the active caches in terms
of this context-based join-tree (for lack of space we omit the
join-tree definition).

PROPOSITION 3 (the context-based join-tree)
Given a pseudo-tree T of G, its set of (branch-based) maxi-
mal contexts, each combined with its variable, form clusters,
where each cluster is connected to a parent cluster along the
pseudo-tree, yielding the context-based join-tree.

Example 3 In Figure 2 left The maximal clusters are CH =
{B,H,G}, CG = {G,B,D, F}, CF = {F,B,D,E},
CE = {E,A,B,D}, CD = {D,A,B,C}, all connected
in a chain.

PROPOSITION 4 (number of active cache variables)
Given a pseudo-tree T of G with its associated context-
based join-tree, T , the number of active cache variables
along T , equals the number of edges in T .

Corollary 1 A pseudo-tree has an induced-width w, it must
have at least w dead-cache variables.

Number of Active Caches of OR vs. AND/OR
We can show that moving from a pseudo-tree to an asso-
ciated pseudo-chain, the context of variables may only in-
crease.

PROPOSITION 5 If T is a pseudo-tree with tree-width w and
if L is a pseudo-chain created by depth-first search of T ,
having path-width pw, then: (1) The context of every vari-
able in L, contains or equals its context in T . Consequently;
(2) The size of each context may only increase, implying
pw ≥ w ; (3) The number of active cache variables in L
is smaller or equal to that in T ; (4) Since pw ≥ w we are
guaranteed having pw dead-caches in L which is more than
the guaranteed dead-caches in T .

Example 4 In Figure 1 the context of D in the AND/OR tree
is AB and in the chain it is ACB. The number of active
caches stays the same however. Those are: D and E for the
pseudo-tree in Figure 1c and are E and F in the chain.

Ineffective-Caching Phenomenon
As implied by theory and as illustrated in Figure 2, Caching
can play an important role in OR search space by reducing
its size from exponential in n to exponential in pw. Yet, re-
cently we observed an empirical phenomenon that puzzled
us. We observed that, on a collection of problem instances
from different benchmarks, when DFBnB with the mini-
bucket heuristic traverses the context-minimal OR search
graph, there are almost no cache hits (i.e., caching does not
reduce the search effort), while caching is quite effective in
the case of AND/OR search on the same problem instances.
We consider the following two hypotheses to explain this
phenomenon.

H1 Caching is ineffective in OR spaces because the context-
minimal OR spaces have a small number of active caches.

H2 Caching is ineffective in OR spaces because the search
algorithm prunes the search space considerably and visits
a subspace which is mostly a tree and not a graph.

Empirical Evaluation
We consider three problem domains: computing haplotypes
in genetic analysis (pedigree), protein side-chain prediction
(pdb), and randomly generated grid networks.

Table 1 contains detailed results. For each instance we run
DFBnB on the context-minimal OR space without (“OR”)
and with caching (“OR+C”) and on the context-minimal
AND/OR space without (“AND/OR”) and with caching
(“AND/OR+C”). For each run we report the following data:
the i-bound, maximum domain size k, induced width w,
pseudo tree height h, number of variables n, number of
nodes cached during search (“Cached”), number of nodes
expanded (“Expanded”), running time in seconds (“Time”),
ratio between the number of nodes cached and the number of
nodes expanded (“Ratio”), number of nodes pruned by the
heuristic (“Pruned”), and the number of times a node was
retrieved from cache and not expanded (“Hits”).

R(T) is the proportion of active-cache nodes in the search
space and it does not account for the pruning DFBnB does.
By contrast, the Ratio shown in our table accounts for prun-
ing, as it shows the proportion of active-cache nodes encoun-
tered during search with respect to the number of nodes ex-
panded by DFBnB.

Analysis and Discussion
On average caching in OR spaces reduces less than 0.1%,
7%, and 1% the number of nodes expanded on instances of
grids, pdb, and pedigree, respectively. By contrast, on av-
erage, caching in AND/OR spaces reduces 74%, 62%, and
74% the number of nodes expanded on instances of grids,
pdb, and pedigree, respectively.

Pedigrees. We observe here that caching has hardly any
impact when searching the OR space. In the reported 4 in-
stances the path-widths are very large (112, 90, 232, 294)
implying at least this number of dead caches. Also, the un-
derlying context-minimal search graph must be extremely
large containing at least k112, k90, k232, k294 nodes. This
suggests a very small proportion of active-caches. This fact
coupled with the observation that only a tiny fraction of the
search space was explored by DFBnB, implies that almost
all the active caches were pruned. For AND/OR search we
observe a much more significant impact of caching. Yet in
this case it does not translate to a significant time difference.

Grids Similarly to the pedigrees we observe on grids al-
most no change in the OR search space with or without
caching. Here the path-widths (103, 115, 142, 172) are far
larger then the tree-widths in AND/OR space (20, 20, 21, 22,
25) which can explain the observed behavior. Again we ob-
serve that the AND/OR search tree is far smaller (explained
by the bounded h) and more interestingly, the impact of
caching is significant on top of it, reducing the height into
a width by a factor between 2 and 3 (e.g., 55 to 20, or from
63 to 21). Since the proportion of cache nodes is far more

Instance Space i k w h n Cached Expanded Time Ratio Pruned Hits

Pedigree

pedigree1

OR 13 4 112 297 298 0 5,762 2 0.00000 5,885 0
OR+C 13 4 112 297 298 1,072 5,534 2 0.19371 5,786 8
AND/OR 13 4 15 44 298 0 2,480 2 0.00000 2,337 0
AND/OR+C 13 4 15 44 298 515 990 2 0.52020 1,059 143

pedigree23

OR 13 5 90 308 309 0 191,831 12 0.00000 353,680 0
OR+C 13 5 90 308 309 356 191,815 12 0.00186 353,672 2
AND/OR 13 5 25 52 309 0 330,834 12 0.00000 343,667 0
AND/OR+C 13 5 25 52 309 6,343 98,579 11 0.06434 124,715 29,758

pedigree37

OR 13 5 232 725 726 0 414,737 37 0.00000 570,523 0
OR+C 13 5 232 725 726 802 414,491 37 0.00193 570,340 2
AND/OR 13 5 21 56 726 0 770,701 37 0.00000 894,659 0
AND/OR+C 13 5 21 56 726 11,584 184,039 33 0.06294 466,898 33,214

pedigree39

OR 13 5 294 952 953 0 1,149,622,319 21,137 0.00000 1,148,395,337 0
OR+C 13 5 294 952 953 2,718 1,149,619,259 21,167 0.00000 1,148,392,739 66
AND/OR 13 5 22 74 953 0 32,041,954 261 0.00000 31,313,259 0
AND/OR+C 13 5 22 74 953 12,104 2,779,832 29 0.00435 3,022,123 593,721

Grid

50-15-3

OR 10 2 115 224 225 0 11,688,665 161 0.00000 11,342,341 0
OR+C 10 2 115 224 225 638 11,687,717 161 0.00005 11,341,998 15
AND/OR 10 2 21 63 225 0 586,344 5 0.00000 478,202 0
AND/OR+C 10 2 21 63 225 3,661 291,174 4 0.01257 306,756 55,333

50-17-5

OR 10 2 172 288 289 0 437,771,461 7,095 0.00000 407,678,359 0
OR+C 10 2 172 288 289 1,599 437,769,944 7,153 0.00000 407,677,607 26
AND/OR 10 2 25 70 289 0 21,947,490 180 0.00000 17,290,691 0
AND/OR+C 10 2 25 70 289 7,664 6,027,678 55 0.00127 5,507,515 1,288,041

75-16-5

OR 10 2 142 255 256 0 695,049,287 10,778 0.00000 578,543,000 0
OR+C 10 2 142 255 256 1,109 695,048,407 10,803 0.00000 578,542,766 18
AND/OR 10 2 22 68 256 0 7,932,925 63 0.00000 4,994,048 0
AND/OR+C 10 2 22 68 256 11,633 1,021,966 10 0.01138 777,653 309,421

75-16-7

OR 10 2 142 255 256 0 1,317,068,856 20,013 0.00000 862,806,093 0
OR+C 10 2 142 255 256 896 1,317,067,957 20,029 0.00000 862,805,822 16
AND/OR 10 2 22 68 256 0 6,977,687 56 0.00000 5,021,139 0
AND/OR+C 10 2 22 68 256 5,239 1,944,310 18 0.00269 1,969,161 338,314

Pdb

pdb1aly

OR 3 81 39 121 122 0 549,850,965 21,580 0.00000 5,894,820,705 0
OR+C 3 81 39 121 122 86,005,397 547,195,149 22,492 0.15717 5,852,566,335 1,327,392
AND/OR 3 81 11 25 122 0 84,022 11 0.00000 1,958,304 0
AND/OR+C 3 81 11 25 122 4,003 37,741 10 0.10607 1,188,441 13,466

pdb1hbk

OR 3 81 36 82 83 0 18,388,104 1,290 0.00000 433,974,365 0
OR+C 3 81 36 82 83 2,368,665 18,035,836 1,300 0.13133 422,837,769 90,693
AND/OR 3 81 11 24 83 0 956,908 59 0.00000 23,668,922 0
AND/OR+C 3 81 11 24 83 56,509 589,861 51 0.09580 16,800,384 162,781

pdb1jer

OR 3 81 33 95 96 0 9,442,948 385 0.00000 129,004,446 0
OR+C 3 81 33 95 96 1,158,395 7,703,857 344 0.15037 109,765,683 367,006
AND/OR 3 81 8 18 96 0 26,980 4 0.00000 270,705 0
AND/OR+C 3 81 8 18 96 1,333 9,996 3 0.13335 121,055 4,489

pdb3c2c

OR 3 81 45 88 89 0 159,754,903 4,491 0.00000 1,167,808,588 0
OR+C 3 81 45 88 89 37,734 159,754,868 4,575 0.00024 1,167,808,304 2
AND/OR 3 81 14 25 89 0 97,310,221 4,700 0.00000 2,866,424,518 0
AND/OR+C 3 81 14 25 89 689,444 26,991,637 977 0.02554 433,467,660 13,056,700

Table 1: Results on pedigree, grid, and pdb instances.

significant and since the actual search visits a larger portion
of the context-minimal graph the number of cached nodes
is far larger for the AND/OR case. Notice that the results
we showed were for i-bound of 10. When we used stronger
heuristics we observed similar results, yet the pruning of the
search space was larger, yielding in most cases a smaller
number of nodes expanded and smaller ratios of the number
of nodes cached with the number of nodes expanded, mak-
ing the OR expanded search space even closer to a tree, as
the i-bound increases.

Protein (pdb) We observe many instances where the num-
ber of caches is high even for OR spaces and the number of
cache hits is much larger than in the other domains. This can
be explained in part due to the much smaller path-widths in
this benchmark—the path-widths vary between 35-50. Thus
the underlying context-minimal search graphs contains tree
of moderate sizes (e.g. k42, k39, k47, k36). Yet, the number
of variables is also smaller so the fraction of active caches
may not be that large either. We observe also that in this case

the search algorithm expands a larger fraction of the context-
minimal graph and therefore may see more hit caches. How-
ever, caching only marginally reduces the number of nodes
expanded in the OR spaces. By contrast, major reductions
are observed in the AND/OR spaces.

Conclusion
Our results suggest that the phenomenon we observe can
be explained by a combination of hypotheses H1 and H2.
That is, due to its higher path-width, the OR search space is
several orders of magnitudes larger than the corresponding
AND/OR search graph. While OR context-minimal search
spaces can have a significant number of active caches, their
proportion in the search space is still very small. It is there-
fore far more likely that DFBnB, who must prune a huge
portion of the search space to determine optimality, will not
see a particular node, and even more unlikely that it will see
a particular node more than once, when searching exponen-
tial spaces having a small fraction of active cache nodes.

References
Bodlaender, H. L. 2007. Treewidth: Structure and algo-
rithms. In Structural Information and Communication Com-
plexity, 14th International Colloquium, SIROCCO 2007,
Castiglioncello, Italy, June 5-8, 2007, Proceedings, 11–25.
Darwiche, A. 2001. Recursive conditioning. Artificial Intel-
ligence 125(1-2):5–41.
Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial Intelligence 171(2-3):73–
106.
Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme of approximating inference. Journal of ACM
50(2):107–153.
Dechter, R. 2013. Reasoning with Probabilistic and De-
terministic Graphical Models: Exact Algorithms. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Ihler, A.; Flerova, N.; Dechter, R.; and Otten, L. 2012. Join-
graph based cost-shifting schemes. In Uncertainty in Artifi-
cial Intelligence (UAI), 397–406.
Kask, K., and Dechter, R. 2001. A general scheme for au-
tomatic search heuristics from specification dependencies.
Artificial Intelligence.
Marinescu, R., and Dechter, R. 2009. Memory intensive
and/or search for combinatorial optimization in graphical
models. Artificial Intelligence 173(16-17):1492–1524.

