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1 Problem Statement

Graphical models such as Bayesian networks have many applications in computational biology, numerous algo-
rithmic improvements have been made over the years. Yet many practical problem instances remain infeasible
as technology advances and more data becomes available, for instance through SNP genotyping and DNA se-
quencing. We therefore suggest a scheme to parallelize a graphical model search algorithm on a computational
grid, with applications to finding the most likely haplotype configuration in general pedigrees. Through this we
can obtain faster solution times than sequential algorithms and solve previously infeasible problem instances.

Haplotyping as Bayesian Inference

Bayesian networks can be employed to model general pedigrees expressing ancestral relations: for each individual
the genotype at different loci is represented by two variables with the possible alleles as their domain and a
probability distribution that is conditioned on the parents’ genotypes. Auxiliary probabilistic variables are
added to capture recombination between loci, phenotypes are typically modeled as evidence variables. Maximum
likelihood haplotyping then translates to finding the most probable explanation [3], i.e., finding the assignment
to all non-observed variables that maximizes the joint probability.

2 Parallelized Search in Graphical Models

Search methods are a popular way to solve various problems specified over graphical models. In the past, special
techniques have been introduced that exploit underlying problem structure like conditional independencies in
Bayesian networks. A unifying framework for this is AND/OR search [2], which captures independence of
subproblems in its search space and avoids redundant computations through caching subproblem solutions.
To solve optimization problems like maximum likelihood haplotyping branch-and-bound methods have been
adapted to AND/OR principles as well [4].

In order to introduce parallelism, we employ a cutset conditioning scheme, where one picks a subset of the
variables and, for all its possible instantiations, computes the solution to the remaining network separately
[6, 1]. This provides a straightforward approach to parallelization, namely solving the conditioned subproblems
concurrently on the computers in the grid. A second, orthogonal means of parallelizing is established via problem
decomposition by virtue of the AND/OR framework. The cutset itself can be explored by an AND/OR branch
and bound procedure, where subproblem solutions function as bounds and can lead to pruning. Cutset leaf
nodes represent conditioned subproblems, these are generated only as computers in the grid become available.

3 Preliminary Results

Our parallelized scheme has been implemented on top of the Condor workload management system [8], which
among other things provides resource management and redundancy on a grid of computers (cf. [7] for a similar
approach to linkage analysis). Our evaluation setup consisted of a grid of up to 20 typical desktop computers,
ranging in speed from 2.33 to 3 GHz, with 2 to 3 GB of memory.

The Bayesian networks we used were converted from general pedigrees. The resulting problem instances
range from several hundred to over a thousand variables (column n) with variable domain size k between 4 and
6, and with significant induced width w (which is a measure of complexity of the underlying graphical model).
Table 1 presents the results on a number of problem instances that were also solved by sequential search on a
single computer; the respective sequential solution time is given in the column ts. We contrast this with our
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d = 2 d = 3 d = 4 d = 5 d = 6
instance n k r w h ts tp M tp M tp M tp M tp M

pedigree1 334 4 5 15 48 1 24 5 14 5 29 6 36 6 36 6
pedigree20 437 5 4 22 60 211 111 6 108 12 169 32 461 89 706 144
pedigree23 402 5 4 25 51 18 88 13 122 22 140 25 203 42 169 39
pedigree30 1289 5 5 21 108 426 732 4 609 8 449 16 386 32 514 64
pedigree33 798 4 5 28 98 624 619 3 994 6 969 6 213 12 238 24
pedigree37 1032 5 4 21 56 11 100 22 86 17 144 28 391 72 374 72
pedigree38 724 5 4 17 69 651 617 7 514 11 369 14 374 17 464 45
pedigree39 1272 5 4 21 76 130 124 5 106 11 158 26 403 76 703 139
pedigree50 514 6 4 17 47 7 121 19 182 37 334 62 579 108 1185 234

Table 1: Results on general pedigrees of varying complexity.

parallelized scheme on five computers (plus another one for generating the subproblems) and varying granularity
of parallelization. The latter is captured by the parameter d, ranging from d = 2 (few, bigger subproblems) to
d = 6 (many, smaller subproblems). In each case we report the overall solution time of the parallelized scheme
tp as well as the number of subproblems that were generated and solved, M .

We observe that on easy problems (with small ts) our parallelized scheme is not beneficial – in fact, solution
times tend to deteriorate as we increase the parallelization parameter d. But this was to be expected since the
parallelization process introduces overhead through grid management and communication. On more complex
instances, however, we see significant improvements in terms of overall running time. On On pedigree33 with
d = 3, for instance, parallelization decreases the solution time from 624 seconds to just 213; on pedigree38 it
improves from 651 seconds to under 400.

We also experimented on a harder problem instance that could not be solved by the sequential algorithm.
After fixing d = 9, the parallelized scheme on 10 computers was able to solve it in roughly 25 minutes (this
improved slightly when we used 15 or 20 computers).

4 Discussion

Graphical models like Bayesian networks are a powerful framework since they allow capturing the underlying
problem structure. Search algorithms have proven efficient in exploiting this and, by modeling pedigrees as
Bayesian networks, genetic analysis can benefit as well. We believe that our initial implementation of parallelized
search for maximum likelihood haplotyping shows potential. In preliminary experiments we were able to improve
solution times for all but the simplest instances and solved another problem that had previously been infeasible.
(Note that at this stage we set the parameter d by hand. Eventually we aim to determine it automatically.)

From a theoretical point of view, our approach provides a convenient basis to formalize many interesting
questions. For example, parallelization introduces redundancies into the search process, which we did not discuss
here for space reasons. We are currently developing a formalism to quantify this phenomenon, which will enable
us to reason about it analytically.
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