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General pedigrees can be encoded as Bayesian networks, where the common MPE query corresponds to
finding the most likely haplotype configuration. Based on this, a strategy for grid parallelization of a state-
of-the-art Branch and Bound algorithm for MPE is introduced: independent worker nodes concurrently solve
subproblems, managed by a Branch and Bound master node. The likelihood functions are used to predict
subproblem complexity, enabling efficient automation of the parallelization process. Experimental evaluation
on up to 20 parallel nodes yields very promising results and suggest the effectiveness of the scheme, solving
several very hard problem instances. The system runs on loosely coupled commodity hardware, simplifying
deployment on a larger scale in the future.

1. Introduction

Given a general pedigree expressing ancestral relations over a set of individuals, the haplotyping
problem is to infer the most likely ordered haplotypes for each individual from measured unordered
genotypes. This has previously been cast as solving an optimization problem over a appropriately
constructed Bayesian network,6 for which powerful inference algorithms can be exploited. Yet prac-
tical problems remain infeasible as more data becomes available, for example through SNP sequenc-
ing, suggesting a shift to parallel or distributed computation.

This paper therefore explores parallelization of combinatorial optimization tasks over such
Bayesian networks, which are typically generalized throughthe framework of graphical models.
Specifically, we consider one of the best exact search algorithms for solving the MPE/MAP task
over graphical models, AND/OR Branch and Bound (AOBB). AOBB, whichexploits independen-
cies and unifiable subproblems, has demonstrated superior performance for these tasks compared
with other state-of the art exact solvers (e.g., it was ranked first or second in several competitions13).

To parallelize AOBB we use the established concept of parallel tree search8 where the search
space is explored centrally up to a certain depth and the remaining subtrees are solved in parallel.
For graphical models this can be implemented straightforwardly by exploring the search space of
partial instantiations up to a certain depth and solving theremaining conditioned subproblems in par-
allel. This approach has already proven successful for likelihood computation in Superlink-Online,
which parallelizes cutset conditioning for linkage analysis tasks.16 Our work differs in focusing
on optimization (e.g., MPE/MAP) and in exploiting the AND/OR paradigm, leveraging additional
subproblem independence for parallelism. Moreover, we usethe power of Branch and Bound in a
central search space that manages (and prunes) the set of conditioned subproblems.

The main difference however is that, compared to likelihoodcomputation, optimization presents
far greater challenges with respect to load balancing. Hence the primary challenge in search tree
parallelization is to determine the “cutoff”, theparallelization frontier. Namely, we need a mecha-
nism to decide when to terminate a branch in the central search space and send the corresponding
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subproblem to a machine on the network. There are two primaryissues:(1) Avoid redundancies:
caching of unifiable subproblems is lost across the independently solved subproblems, hence some
work might be duplicated;(2) Maintain load balancingamong the grid resources, dividing the total
work equally and without major idling periods. While introducing redundancy into the search space
can be counterproductive for both tasks, load balancing is afar greater challenge for optimization,
since the cost function is exploited in pruning the search space. Capturing this aspect is essential in
predicting the size of a subproblem and thus the focus of thispaper.

The contribution of this work is thus as follows: We suggest aparallel BaB scheme in a graphical
model context and analyze some of its design trade-offs. We devise an estimation scheme that pre-
dicts the size of future subproblems based on cost functionsand learns from previous subproblems
to predict the extent of BaB pruning within future subproblems. We show that these complexity esti-
mates enable effective load distribution (which was not possible via redundancy analysis only), and
yield very good performance on several very hard practical problem instances, some of which were
never solved before. Our approach assumes the most general master-worker scenario with minimal
communication and can hence be deployed on a multitude of grid setups spanning hundreds, if not
thousands of computers worldwide. While our current empirical work is tested on up to 20 machines
so far, its potential for scaling up are very promising.

Related work: The idea of parallelized Branch and Bound in general is not new,but existing
work often assumes a shared-memory architecture or extensive inter-process communication,3,7,8 or
specific grid hierarchies.1 Earlier results on estimating the performance of search predict the size of
general backtrack tress through random probing.10,12Similar schemes have been devised for Branch
and Bound algorithms, where the algorithm is ran for a limitedtime and the partially explored tree
is extrapolated.4 Our method, on the other hand, is not sampling-based but onlyuses parameters
available a priori and information learned from past subproblems which is facilitated through the
use of depth-first branch and bound to explore the master search space.

2. Background

Our approach is based on the general framework of graphical model reasoning:

Definition 2.1 (graphical model). A graphical model is given as a set of variablesX =

{X1, . . . , Xn}, their respective finite domainsD = {D1, . . . , Dn}, a set of cost functionsF =

{f1, . . . , fm}, each defined over a subset ofX (the function’sscope), and a combination operator
(typically sum, product, or join) over functions. Togetherwith a marginalization operator such as
minX andmaxX we obtain areasoning problem.

For instance, theMPE problem (most probable explanation) is typically posed over a Bayesian
Network structure, representing the factorization of a joint distribution into conditional probabilities,
with the goal of finding an assignment with maximum probability. In the area of constraint reasoning,
aweighted CSPis defined as minimizing the sum of a set of cost functions overthe variables.

Definition 2.2 (primal graph, induced graph, induced width). The primal graphof a graphical
model is an undirected graph,G = (X,E) . It has the variables as its vertices and an edge connecting
any two variables that appear in the scope of the same function. Given an undirected graphG and an
orderingd = X1, . . . , Xn of its nodes, the width of a node is the number of neighbors thatprecede it
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Fig. 1: (a) Example primal graph with six variables, (b) its induced graph along orderingd =

A,B,C,D,E, F , (c) a corresponding pseudo tree, and (d) the resulting context-minimal AND/OR
search graph.

in d . Theinduced graphG′ ofG is obtained as follows: from last to first ind , each node’s preceding
neighbors are connected to form a clique (where new edges are taken into account when processing
the remaining nodes). Theinduced widthw∗ is the maximum width over all nodes in the induced
graph along orderingd .

Figure 1(a) depicts the primal graph of an example problem with six variables. The induced graph
for the example problem along orderingd = A,B,C,D,E, F is depicted in Figure 1(b), its induced
width is 2. Note that different orderings will vary in their implied induced width; finding an ordering
of minimal induced width is known to be NP-hard, in practice heuristics likeminfill11 are used to
obtain approximations.

2.1. Encoding Pedigrees as Bayesian Networks G11p G11m

P11
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Fig. 2: Example fragment of a
Bayesian network encoding of a gen-
eral pedigree.

Expressing a particular pedigree as a Bayesian Network
utilizes three building blocks: (1) For each individual and
each locus, the two haplotypes are represented by two vari-
ables, with the possible alleles as their domain and a prob-
ability distribution conditioned on the variables represent-
ing the parents’ haplotypes at this locus. (2) The measured,
unordered genotypes are captured as phenotype variables,
which are conditioned on the corresponding pair of hap-
lotypes. (3) Auxiliary binary selector variables are linked
across loci, to capture recombination events.

Figure 2 shows a simple example of such a Bayesian
network, the displayed fragment includes three individu-
als (two parents and their child) and two loci. For instance,
G13p is the paternal haplotype of individual 3 (the child) at locus 1. It depends on the father’s
haplotypesG11p andG11m, where the inheritance is determined by the selector variable S13p i.e.,
G13p = G11p if S13p = 0 andG13p = G11m if S13p = 1 . Together with the maternal haplotypeG13m ,
G13p determines the genotype inP13. The value of the inheritance selectorS23p for the paternal
haplotype of individual 3 at locus 2 is dependent on the selector S13p for locus 1, where the actual
probabilities are recombination fractions between these two loci, provided as input.
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With this construction, the joint distribution of the Bayesian network captures the probability
over all haplotype configurations. Given a set of evidence (i.e., measurements for some or all of the
unordered genotypes), the solution to the common problem offinding the most probable explanation
(MPE) will yield the most likely haplotypes.6

2.2. AND/OR Search Spaces

The concept of AND/OR search spaces has been introduced as a unifying framework for advanced
algorithmic schemes for graphical models to better capturethe structure of the underlying graph.5

Its main virtue consists in exploiting conditional independencies between variables, which can lead
to exponential speedups. The search space is defined using apseudo tree, which captures problem
decomposition:

Definition 2.3 (pseudo tree).Given an undirected graphG = (X,E) , a pseudo treeof G is a di-
rected, rooted treeT = (X,E′) with the same set of nodesX , such that every arc ofG that is not
included inE′ is a back-arc inT , namely it connects a node inT to an ancestor inT . The arcs in
E′ may not all be included inE .

AND/OR Search Trees : Given a graphical model instance with variablesX and functions
F , its primal graph(X,E) , and a pseudo treeT , the associatedAND/OR search treeconsists of
alternating levels of OR and AND nodes. OR nodes are labeledXi and correspond to the variables
in X . AND nodes are labeled〈Xi, xi〉 , or justxi and correspond to the values of the OR parent’s
variable. The structure of the AND/OR search tree is based onthe underlying pseudo treeT : the
root of the AND/OR search tree is an OR node labeled with the root of T . The children of an OR
nodeXi are AND nodes labeled with assignments〈Xi, xi〉 that are consistent with the assignments
along the path from the root; the children of an AND node〈Xi, xi〉 are OR nodes labeled with the
children ofXi in T , representing conditionally independent subproblems. Itwas shown that, given
a pseudo treeT of heighth , the size of the AND/OR search tree based onT is O(n · kh), wherek
bounds the domain size of variables.5

AND/OR Search Graphs : Different nodes may root identical and can be merged through
caching, yielding anAND/OR search graphof smaller size, at the expense of using additional mem-
ory during search. A mergeable nodeXi can be identified by itscontext, the partial assignment of
the ancestors ofXi which separates the subproblem belowXi from the rest of the network. Merging
all context-mergeable nodes yields thecontext minimalAND/OR search graph.5

Proposition 2.1. Given a graphical model, its primal graphG , and a pseudo treeT , the size of
the context-minimal AND/OR search graph isO(n· kw∗

) , wherew∗ is the induced width of G over a
depth-first traversal ofT andk bounds the domain size.

Example 2.1. Figure 1(c) depicts a pseudo tree extracted from the inducedgraph in Figure 1(b) and
Figure 1(d) shows the corresponding context-minimal AND/OR search graph. Note that the AND
nodes forB have two children each, representing independent subproblems and thus demonstrating
problem decomposition. Furthermore, the OR nodes forD (with context{B,C}) andF (context
{B,E}) have two edges converging from the AND level above them, signifying caching.
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Weighted AND/OR Search Graphs :Given an AND/OR search graph, each edge from an OR
nodeXi to an AND nodexi can be annotated byweightsderived from the set of cost functionsF
in the graphical model: the weightl(Xi, xi) is the sum of all cost functions whose scope includes
Xi and is fully assigned along the path from the root toxi , evaluated at the values along this path.
Furthermore, each node in the AND/OR search graph can be associated with avalue: the valuev(n)
of a noden is the minimal solution cost to the subproblem rooted atn , subject to the current variable
instantiation along the path from the root ton . v(n) can be computed recursively using the values of
n’s successors.5

2.3. AND/OR Branch and Bound

AND/OR Branch and Bound is a state-of-the-art algorithm for solving optimization problems over
graphical models. Assuming a minimization task, it traverses the context-minimal AND/OR graph
in a depth-first manner while keeping track of a current upperbound on the optimal solution cost. It
interleaves forward node expansion with a backward cost revision or propagation step that updates
node values (capturing the current best solution to the subproblem rooted at each node), until search
terminates and the optimal solution has been found.5

3. Setup and Parallel Scheme

We assume a very general parallel framework in which autonomous hosts are loosely connected
over some network – in our case we use ten dual-core desktop computers, with CPU speeds between
2.33 and 3.0 GHz, on a local Ethernet, thus allowing experiments with up to 20 parallel nodes. We
impose amaster-workerhierarchy on the computers in the network, where a specialmasternode
runs a central process to coordinate theworkers, which cannot communicate with each other. This
general model is chosen to accommodate a wide range of parallel resources, where direct node
communication is often either prohibitively slow or entirely impossible; it also facilitates flexible
deployment on geographically dispersed, heterogeneous resources in the future.

The setup is similar to Superlink-Online,16 which has been very successful in using large-
scale parallelism in likelihood algorithms for genetic linkage analysis, or SETI@home,2 which uses
Internet-connected PCs around the world to search through enormous amounts of radio data. Like
Superlink-Online, our system is implemented on top of theCondorgrid middleware.17

3.1. Parallel AND/OR Branch and Bound

We include here only a brief outline of the master process andrefer to Ref. 15 for details and pseudo
code. As a Branch and Bound scheme, exploration and propagation alternate as follows:

Master Exploration. The master process explores the AND/OR graph in a depth-firstmanner
guided by the start pseudo treeTc . Upon expansion of a noden it consults a heuristic lower bound
lb(n) to make pruning decisions, where the computation of the upper boundub(n) can take into
account previous subproblem solutions. Iflb(n) ≥ ub(n), the current subtree can be pruned. Explo-
ration is halted when the parallelization frontier is reached. The master then sends the respective
subproblem, given by the subproblem root variable and its context instantiation, to a worker node.

Master Propagation.The master process also collects and processes subproblem solutions from
the worker nodes. Upon receipt of a solved subproblem, its solution is assigned as the value of the
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respective node in the master search space and recursively propagated upwards towards the root,
updating node values identical to sequential AOBB.

With a fixed number of workersp , the master initially generates only the firstp subproblems;
worker nodes solve subproblems using sequential AOBB13 and send the solution back to the master,
where it is propagated; the central exploration is then resumed to generate the next subproblem.

Example 3.1. Consider again the AND/OR search graph in Figure 1(d). Given astart pseudo tree
havingA andB, we can illustrate the parallelization scheme through Figure 3: the search space of
the master process is marked in gray, and each of the eight independent subproblems rooted atC or
E can be solved in parallel.

Fig. 3: Parallelization scheme applied to the ex-
ample problem: master search space (gray) and
eight independent subproblems.

The central decision is obviously where
to place theparallelization frontier, i.e., at
which point to cut off the master search
space. Preliminary experiments, conducted
with globally enforced fixed-depth cutoff,
have shown that the parallel scheme car-
ries great potential.15 It also became evident,
however, that the issue of load balancing is
crucial for the overall performance (while
structural redundancy, for instance, does not
seem to have a major impact). In particular, the scheme needsto ensure that the workload is evenly
distributed over all processing units, each of which shouldbe utilized equally. Secondly, it is critical
to minimize overhead resulting from network communicationand resource management.

In the fixed cutoff experiments we observed great variance insubproblem complexity with rela-
tive differences of up to three orders of magnitude. In the following section we will therefore focus
on estimating subproblem complexity ahead of time15 . With this the master can dynamically de-
cide at which point a given subproblem is “simple enough” forparallelization (to avoid excessively
hard tasks) and also avoid very easy subproblems, whose solution time will be dominated by the
distributed system overhead.

4. Predicting Subproblem Size Using the Cost Function

In this section we derive a scheme for estimating the size of the explored search space of a con-
ditioned subproblem using parameters associated with the problem’s cost function, allowing us to
enforce an upper bound on the complexity of subproblems.

When considering a particular subproblem rooted at noden, we propose to estimate its complex-
ity N(n) (i.e., the number of node AOBB explores to solve it) as a function of the heuristic lower
boundL(n) as well as the upper boundU(n) , which can be computed based on earlier parts of the
search space or through an approximation algorithm like local search; we will also use the height
h(n) of the subproblem pseudo tree.



September 21, 2010 0:4 WSPC - Proceedings Trim Size: 11in x 8.5in psb11-parallel-haplotypes-final

4.1. Main Assumptions

We consider a noden that roots the subproblemP (n). If the search space belown was a perfectly
balanced tree of heightD, with every node having exactlyb successors, clearly the total number of
nodes isN = (bD+1 − 1)/(b− 1) ≈ bD .

However, even if the underlying search space is balanced, the portion expanded by BaB, guided
by some heuristic evaluation function, is not: the more accurate the heuristic, the more focused
around the optimal solution paths the search space will be. In state-based search spaces it is therefore
common to measure effectiveness in post-solution analysisvia theeffective branching factordefined
asb= D

√
N whereD is the length of the optimal solution path andN is the actual number of nodes

generated.14

Inspired by this approach, for a subproblem rooted atn we adopt the idea of approximating the
explored search space by a balanced tree and express its sizethroughN(n) = b(n)D(n) . However, in
place of the optimal solution path length (which corresponds to the pseudo tree height in our case),
we propose to interpretD(n) as the average leaf node depthD̄(n) defined as follows:

Definition 4.1 (Average leaf node depth).Let l1, . . . , lj denote the leaf nodes generated when solv-
ing subproblemP (n). We define theaverage leaf node depthof P (n) to beD̄(n) := 1

j

∑j
k=1 dn(lk) ,

wheredn(li) denotes the depth of leaf nodei relative to the subproblem rootn.

We next aim to expressb(n) andD̄(n) as functions of the subproblem parametersL(n), U(N),
andh(n) (using other parameters is subject to future research).

4.2. Estimating the Effective Branching Factor

For the sake of simplicity we assume an underlying, “true” effective branching factorb that is con-
stant for all possible subproblems. We feel this is a reasonable assumption since all subproblems are
conditioned within the same graphical model. We thus modelb(n) as a normally distributed random
variable and take its mean as the constantb , which we found to be confirmed in experiments. An ob-
vious way to learn this parameter is then to average over the effective branching factors of previous
subproblems, which is known to be the right statistic for estimating the true average of a population.

Estimating b for new Subproblem P (n) : Given a set of already solved subproblems
P (n1), . . . , P (nr), we can computēD(ni) and derive effective branching degreesb(ni) =

D̄(ni)
√

N(ni)

for all i. We then estimateb throughb∗ = 1
r

∑r
i=1 b(ni) .

4.3. Deriving and Predicting Average Leaf Depth

With each subproblemP (n) rooted at a noden we associate a lower boundL(n) based on the heuris-
tic estimate and an upper boundU(n) derived from the best solution from previous subproblemsa.
Both L(n) andU(n) are known before we start solvingP (n). We can assumeL(n) < U(n), since
otherwisen itself could be pruned andP (n) was trivially solved. We denote withlb(n′) andub(n′)

the lower and upper bounds of nodesn′ within the subproblemP (n) at the time of their expansion
and similarly assert thatlb(n′) < ub(n′) for any expanded noden′.

aWe assume a graphical model with addition as the combinationoperator. Adaption to multiplication is straightforward.
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Since the upper bound is derived from the best solution foundso far it can only improve through-
out the search process. Furthermore, assuming a monotonic heuristic function (that provides for any
noden′ a lower bound on the cost of the best solution path going throughn′), the lower bounds along
any path in the search space are non-decreasing and we can state that any noden′ expanded within
P (n) satisfies:

L(n) ≤ lb(n′) < ub(n′) ≤ U(n)

Consider now a single path withinP (n), from n down to leaf nodelk , and denote it byπk =

(n′

o, . . . , n
′

dn(lk)
) , wheren′

0 = n and dn(lk) is again the depth oflk with respect ton (and hence
n′

dn(lk)
= lk). We will write lbi for lb(n′

i) andubi for ub(n′

i), respectively, and can state thatlbi ≥ lbi−1

andubi ≤ ubi−1 for all 1 ≤ i ≤ dn(lk) (note thatlb0 = L(n) andub0 = U(n) ). An internal noden′ is
pruned ifflb(n′) ≥ ub(n′) or equivalentlyub(n′)− lb(n′) ≤ 0 , hence we consider the (non-increasing)
sequence of values(ubi− lbi) along the pathπk ; in particular we are interested in the average change
in value from one node to the next, which we capture as follows:

Definition 4.2 (Average path increment). Theaverage path increment ofπk withinP (n) is defined
by the expression:

inc(πk) =
1

dn(lk)

dn(lk)
∑

i=1

((ubi − lbi)− (ubi−1 − lbi−1)) (1)

If we assume(ubdn(lk) − lbdn(lk)) = 0 , the sum reduces to(U(n)− L(n)). Thus rewriting Expression
1 for dn(lk) and averaging to get̄D(n) as in Definition 4.1 yields:

D̄(n) = (U(n)− L(n))
1

j

j
∑

k=1

1

inc(πk)
(2)

We now defineinc(n) of P (n) throughinc(n)−1 = 1
j

∑j
k=1

1
inc(πk)

, with which Expression 2 becomes
D̄(n) = (U(n)− L(n)) · inc(n)−1 , namely an expression for̄D(n) as a ratio of the distance between
the initial upper and lower bounds andinc(n) . Note that in post-solution analysis̄D(n) is known
andinc(n) can be computed directly, without considering eachπj .

One more aspect that has been ignored in the analysis so far, but which is likely to have an
impact, is the actual heighth(n) of the subproblem pseudo tree. We therefore propose to scaleD̄(n)

by a factor of the formh(n)α ; in our experiments we foundα = 0.5 to yield good resultsb. The
general expression we obtain is thus:

D̄(n)

h(n)α
=

U(n)− L(n)

inc(n)
(3)

Predicting D̄(n) for New Subproblem P (n) : Given previously solved subproblems
P (n1), . . . , P (nr) , we need to estimateinc(n) in order to predictD̄(n) . Namely, we compute
inc(ni) = (U(ni)− L(ni)) · h(ni)

α · D̄(ni)
−1 for 1 ≤ i ≤ r . Assuming again thatinc(n) is a ran-

dom variable distributed normally we take the sample average to estimateinc∗ = 1
r

∑r
i=1 inc(ni) .

bEventuallyα could be subject to learning as well.
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Using Equation 3, our prediction for̄D(n) is:

D̄∗(n) =
(U(n)− L(n)) · h(n)α

inc∗
(4)

Predicting N(n) for a New Subproblem P (n) : Given the estimatesb∗ and inc∗ as derived
above, we will predict the number of nodesN(n) generated withinP (n) as:

N∗(n) = b∗ D̄∗(n) (5)

The assumption thatinc andb are constant across subproblems is clearly too strict, morecomplex
dependencies will be investigated in the future. For now, however, even this basic approach has
proven to yield good results, as we will demonstrate in Section 5.

4.4. Parameter Initialization

To find an initial estimate of both the effective branching factor as well as the average increment, the
master process performs 15 seconds of sequential search. Itkeeps track of the largest subproblem
P (n0) solved within that time limit and extractsb(no) as well asinc(n0) , which will then be used
as initial estimates for the first set of cutoff decisions. Additionally, we perform a 60 second run
of stochastic local search,9 which returns a solution that is not necessarily optimal, but in practice
usually close to it. This provides an initial lower bound forsubproblem estimation and pruning.

5. Experiments

We conducted experiments with our parallel AOBB scheme usingthe above prediction scheme to
make the cutoff decision fully automatically. The cutoff threshold was set toT = 12 · 108, which
corresponds to roughly 20 minutes of processing time and wasdeemed to be a good compromise
between subproblem granularity and parallelization overhead.

Overall solution times are given in Table 1.n, k, andw denote the number of variables, max.
domain size, and induced width of the problem’s Bayesian network. For reference we include the
sequential solution timeseq and the timeparfix of the best-performing parallel run with fixed cutoff
depth from previous work.15 seq/sls is then the time of the sequential scheme prefaced by 60 seconds

Table 1: Results of the automated parallel scheme (ped:15 workers, mm:10 workers).

instance n k w seq parfix seq/sls par∗/sls

ped7 (25/20) 1068 4 32 19,114 3,352 19,369 2,843
ped13 (20/20) 1077 3 32 2,752 379 2,856 419
ped19 (15/20) 793 5 25 time 27,372 time 10,671
ped31 (25/20) 1183 5 30 77,580 15,230 37,904 3,970
ped41 (25/20) 1062 5 33 14,643 2,173 14,059 2,311
ped51 (25/20) 1152 5 39 time 65,818 time 59,975
mm3.8.5-11 3612 2 37 9,715 1,443 3,003 1,145
mm3.8.5-12 3612 2 37 7,568 1,430 2,090 1,644
mm6.8.3-00 1814 2 31 12,595 1,797 319 288
mm10.8.3-11 2558 2 47 84,920 10,044 39,821 6,906
mm10.8.3-12 2558 2 47 5,630 1,357 2,549 814
mm10.8.3-13 2558 2 46 10,385 2,413 5,397 2,208
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Fig. 4: Subproblem statistics for the first 75 subproblem of ped31 and ped51.

of stochastic local search providing an initial lower bound. Finally, columnpar∗/sls contains the
overall solution time of the automated parallel scheme (similary including SLS preprocessing).

Pedigree Networks :The first set of problems consists of some very hard pedigree networks,
encoded as Bayesian networks as described in Section 2.1, with the number of individuals and loci,
respectively, given after the instance name in Table 1. We can see that in all cases the automatic
scheme does at least as good as the best fixed cutoff, in some cases even better. Again it is important
to realize thatparfix in Table 1 is the result of trying various fixed cutoff depths and selecting the best
one, whereaspar∗/sls requires no such “trial and error”. In case of pedigree31 theSLS initialization
is quite effective for the sequential algorithm, cutting computation from 21 to approx. 10 hours –
yet the automated scheme improved upon this by a factor of almost 10, to just above one hour.
Furthermore, for ped51 and in particular ped19, both of which could not be solved sequentially,
par∗/sls marks a good improvement overparfix .

Mastermind Networks : While not as practically relevant, these hard problems encoding board
game states can provide further insight into the parallel performance. Here we find that for most
problems the automated scheme performs at least as well as the best fixed cutoff (determined after
trying various depths); in general, however, we believe that the overall problem complexity is too
close to the subproblem threshold, inhibiting better parallel performance.

5.1. Subproblem Statistics

Figures 4(a) and (b) contain detailed subproblem statistics for the first 75 subproblems generated by
the automated parallelization scheme on ped31 and ped51, respectively. Each plot shows actual and
predicted number of nodes as well as the (constant) threshold that was used in the parallelization
decision. The cutoff depth of the subproblem root is depicted against a separate scale to the right.

As expected, the scheme does not give perfect predictions, but it reliably captures the trend.
Furthermore, the actual subproblem complexities are all contained within an interval of roughly one
order of magnitude, which is significantly more balanced than the results for fixed cutoff depth.15

We also note that “perfect” load balancing is impossible to obtain in practice, because subproblem
complexity can vary greatly from one depth level to the next along a single path. In particular, if a
subproblem at depthd is deemed too complex, most of this complexity might stem from only one of
its child subproblems at depthd+1, with the remaining ones relatively simple – yet solved separately.
In light of this, we consider the above results very promising.
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5.2. Performance Scaling
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Fig. 5: Performance relative
to p = 5 workers.

At this time we only have a limited set of computational resources
at our disposal, yet we wanted to perform a preliminary evalua-
tion of how the system scales withp , the number of workers. We
hence ran the automated parallel scheme withp ∈ {5, 10, 15, 20}
workers and recorded the overall solution time in each case.

Figure 5 plots the relative overall speedup in relation top = 5

workers. For nearly all instances the behavior is as expected, at
times improving linearly with the number of workers, although
not always at a 1:1 ratio. It is evident that relatively complex
problem instances profit more from more resources; in particu-
lar ped51 sees a two-, three-, and fourfold improvement going to
twice, thrice, and four times the number of workers, respectively.
For simpler instances, we think the subproblem threshold ofap-
prox. 20 minutes is too close to the overall problem complexity, thereby inhibiting better scaling.

6. Conclusion & Future Work

This paper presents a new framework for parallelization of AND/OR Branch and Bound (AOBB),
a state-of-the-art optimization algorithm over graphicalmodels, with applications to haplotyping
for general pedigrees. In extending the known idea of parallel tree search to AOBB, we show that
generating independent subproblems can itself be done through an AOBB procedure, where previous
subproblem solutions are dynamically used as bounds for pruning new subproblems.

The underlying parallel framework is very general and makesminimal assumptions about the
available parallel infrastructure, making this approach viable on many different parallel and dis-
tributed resource pools (e.g., a set of networked desktop computers in our case).

Experiments have shown that the central requirement for good performance lies in effective load
balancing. We have therefore derived an expression that captures subproblem complexity using an
exponential functional form using three subproblem parameters, including the cost function. We then
proposed a scheme for learning this function’s free parameters from previously solved subproblems.
We have demonstrated empirically the effectiveness of the estimates, leading to far better workload
balancing and improved solution times when computing the most likely haplotypes on a number of
hard pedigree instances.

We acknowledge that this initial estimation scheme, while justified and effective, still includes
some ad hoc aspects. We aim to advance the scheme by taking into account additional parameters
and by providing firm theoretical grounds for our approach. Besides extending the scheme itself,
future work will also more thoroughly investigate the issueof parallel scaling, using larger grid
setups than what we had access to so far (or performing simulations to that effect).

Furthermore, we plan to conduct more experiments on larger and harder problems from the
haplotyping domain. In that context we are currently also working on a more in-depth analysis
relating the size and structure of the pedigree and the number of loci in the problem to our scheme’s
performance. And while some problems may remain out of reachdue to their inherent complexity,
we do believe that our scheme will scale to many instances of interest; our confidence is in part based
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on the results obtained with the Superlink Online system,16 which exploits a very similar strategy in
the context of linkage analysis tasks and has proven very successful.

Finally, we note that in practice a small loss in accuracy canoften be tolerated if it leads to
significant time savings or better scaling. To that end, we intend to extend our current exact inference
scheme to approximate reasoning; in particular, our parallel implementation should adapt very well
to the concept of anytime search.
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6. Máayan Fishelson, Nickolay Dovgolevsky, and Dan Geiger. Maximum likelihood haplotyping for gen-
eral pedigrees.Human Heredity, 59:41–60, 2005.

7. Bernard Gendron and Teodor Gabriel Crainic. Parallel branch-and-bound algorithms: Survey and syn-
thesis.Operations Research, 42(6):1042–1066, 1994.

8. Ananth Grama and Vipin Kumar. State of the art in parallel search techniques for discrete optimization
problems.IEEE Trans. Knowl. Data Eng., 11(1):28–35, 1999.
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