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Abstract

In the context of distributed Branch and Bound Search for Graphical Models,
effective load balancing is crucial yet hard to achieve due to early pruning of
search branches. This paper proposes learning a regressionmodel over structural
as well as cost function-based features to more accurately predict subproblem
complexity ahead of time, thereby enabling more balanced parallel workloads.
Early results show the promise of this approach.

1 Introduction

This paper explores the application of learning for improved load balancing in the context of dis-
tributed search for discrete combinatorial optimization over graphical models (e.g., Bayesian net-
works, weighted CSPs). Specifically, we consider one of the best exact search algorithms for solv-
ing the MPE/MAP task over graphical models, AND/OR Branch and Bound (AOBB) [9], ranked
first or second in the UAI’06 and ’08 evaluations. We adapt theestablished concept of parallel tree
search [5], where a search tree is explored centrally up to a certain depth and the remaining sub-
trees are solved in parallel. In the graphical model contextwe explore the search space of partial
instantiations up to a certain point and solve the resultingconditioned subproblems in parallel.

The distributed framework is built with a grid computing environment in mind, i.e., a set of au-
tonomous, loosely connected systems – notably, we cannot assume any kind of shared memory
which many parallel algorithms build upon [4, 5, 1]. The primary challenge – and focus of this
paper – is therefore to find a set of subproblems with balancedcomplexity, so that the overall par-
allel runtime will not be dominated by just a few of them. In the optimization context, however,
the use of cost and heuristic functions for pruning makes it very hard to reliably predict and balance
subproblem complexity ahead of time, even if structural parameters like induced width are known.

Our suggested approach and the main contribution of this paper is to estimate subproblem com-
plexity by learning a regression model over the subproblems’ parameters, structural as well as with
respect to the cost function. This model is trained during preprocessing on a small number of sub-
problem samples and then used to predict the size of each subproblem’s search space in advance,
merging/splitting accordingly.

Prior work on estimating search complexity goes back to [8] and more recently [6], which predict the
size of general backtrack trees through random probing. Similar schemes were devised for Branch
and Bound algorithms [2], where search is run for a limited time and the partially explored tree is
extrapolated. Our approach differs by sampling and learning entirely during preprocessing, allowing
very fast repeated estimates when the parallelization frontier is iteratively computed.

We present some early results of this ongoing work, running with a varying degree of parallelism on
haplotyping problems from the domain of genetic linkage analysis. While limited in scope at this
point, results are promising, with good parallel speedups in particular.
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Figure 1: (a) Example primal graph with six variables, (b) its induced graph along orderingd =
A,B,C,D,E, F , (c) a corresponding pseudo tree, and (d) the resulting context-minimal AND/OR
search graph.

2 Background

We assume the usual definitions of agraphical modelas a set of functionsF = {f1, . . . , fm} over
discrete variablesX = {X1, . . . , Xn} , its primal graph, induces graph, andinduced width. Figure
1(a) depicts the primal graph of an example problem with six variables. The induced graph for the
example problem along orderingd = A,B,C,D,E, F is depicted in Figure 1(b), its induced width
is 2. Note that different orderings will vary in their implied induced width; finding an ordering of
minimal induced width is known to be NP-hard, in practice heuristics like minfill [7] are used to
obtain approximations.

2.1 AND/OR Search Spaces

The concept of AND/OR search spaces has been introduced as a unifying framework for advanced
algorithmic schemes for graphical models to better capturethe structure of the underlying graph [3].
Its main virtue consists in exploiting conditional independencies between variables, which can lead
to exponential speedups. The search space is defined using apseudo tree, which captures problem
decomposition:

DEFINITION 1 (pseudo tree)Given an undirected graphG = (X,E) , a pseudo treeof G is a
directed, rooted treeT = (X,E′) with the same set of nodesX , such that every arc ofG that is not
included inE′ is a back-arc inT , namely it connects a node inT to an ancestor inT . The arcs in
E′ may not all be included inE .

AND/OR Search Trees : Given a graphical model instance with variablesX and functionsF , its
primal graph(X,E) , and a pseudo treeT , the associatedAND/OR search treeconsists of alternat-
ing levels of OR and AND nodes. OR nodes are labeledXi and correspond to the variables inX .
AND nodes are labeled〈Xi, xi〉 , or justxi and correspond to the values of the OR parent’s variable.
The structure of the AND/OR search tree is based on the underlying pseudo treeT : the root of the
AND/OR search tree is an OR node labeled with the root ofT . The children of an OR nodeXi are
AND nodes labeled with assignments〈Xi, xi〉 ; the children of an AND node〈Xi, xi〉 are OR nodes
labeled with the children ofXi in T , representing conditionally independent subproblems. Itwas
shown that, given a pseudo treeT of heighth , the size of the AND/OR search tree based onT is
O(n · kh), wherek bounds the domain size of variables [3].

AND/OR Search Graphs : Different nodes may root identical subproblems and can be merged
throughcaching, yielding anAND/OR search graphof smaller size, at the expense of using ad-
ditional memory during search. A mergeable nodeXi can be identified by itscontext, the partial
assignment of the ancestors ofXi which separates the subproblem belowXi from the rest of the
network. Merging all context-mergeable nodes yields thecontext minimalAND/OR search graph.
Given a graphical model, its primal graphG , and a pseudo treeT , the size of the context-minimal
AND/OR search graph isO(n·kw

∗

) , wherew∗ is the induced width of G over a depth-first traversal
of T andk bounds the domain size [3].

Figure 1(c) depicts a pseudo tree extracted from the inducedgraph in Figure 1(b) and Figure 1(d)
shows the corresponding context-minimal AND/OR search graph. Note that the AND nodes for
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B have two children each, representing independent subproblems and thus demonstrating problem
decomposition. Furthermore, the OR nodes forD (with context{B,C}) andF (context{B,E})
have two edges converging from the AND level above them, signifying caching.

Weighted AND/OR Search Graphs : Given an AND/OR search graph, each edge from an OR
nodeXi to an AND nodexi can be annotated byweightsderived from the set of cost functionsF
in the graphical model: the weightl(Xi, xi) is the sum of all cost functions whose scope includes
Xi and is fully assigned along the path from the root toxi , evaluated at the values along this path.
Furthermore, each node in the AND/OR search graph can be associated with avalue: the valuev(n)
of a noden is the minimal solution cost to the subproblem rooted atn , subject to the current variable
instantiation along the path from the root ton . v(n) can be computed recursively using the values
of n’s successors [3].

AND/OR Branch and Bound : AND/OR Branch and Bound is a state-of-the-art algorithm for
solving optimization problems over graphical models. Assuming a maximization task, it traverses
the context-minimal AND/OR graph in a depth-first manner while keeping track of a current lower
bound on the optimal solution cost. During expansion of a noden, this lower boundl is compared
with a heuristic upper boundu(n) on the optimal solution belown – if u(n) ≤ l the algorithm can
prune the subproblem belown [3].

Figure 2: Parallelization applied to the example
problem from Figure 1, resulting in eight indepen-
dent subproblems, with conditioning search space
in gray.

Distributed AND/OR Branch and Bound :
Our distributed implementation of AND/OR
Branch and Bound is based on the notion of
parallel tree search [5], where a search tree is
explored centrally up to a certain depth and the
remaining subtrees are solved in parallel. In
the context of graphical models we explore the
search space of partial instantiations up to a cer-
tain point and solve the resulting conditioned
subproblems in parallel. Applied to the search
graph from Figure 1(d), for instance, we could
obtain eight independent subproblems as shown
in Figure 2, with a conditioning search space (in
gray) spanning the first two levels (variablesA andB). In the following we will outline our approach
to finding a balanced set of subproblems.

3 Load Balancing through Complexity Prediction

Our general scheme to find a balanced set of subproblems is outlined in Algorithm 1: starting with
just the search space root node (corresponding to a single, large subproblem), we iteratively pick
the subproblem with largest estimated complexity and condition it further, until the desired level of
parallelism (measured by the number of subproblems, typically chosen to be ten times the number of
available CPUs) is obtained. Note that each node generated needs to have its subproblem complexity
estimated, resulting in many such queries; it is therefore advisable to keep most of the estimation
complexity to an offline preprocessing phase in order to ensure fast prediction queries.

The following section derives our principled approach to subproblem complexity prediction, which
we formulate as a regression learning problem. We note that,while the goal in the present context is

Algorithm 1 Pseudo code for subproblem generation

Input: Pseudo treeT with rootX0, minimum subproblem countp, complexity estimator̂N .
Output: SetF of subproblem root nodes with|F | ≥ p .
1: F ← {〈X0〉}
2: while |F | < p :
3: n′ ← argmaxn∈F N̂(n)
4: F ← F \ {n′}
5: F ← F ∪ children(n′)
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to ensure balanced subproblem complexity in the distributed scheme, accurate complexity prediction
is a worthwhile issue in itself and a possible subject of future research.

3.1 Subproblem Complexity Prediction

Given a search noden, we propose to model the complexity of the subproblem below it (measured
by the number of node expansions required for its solution) as an exponential function of various
subproblem featuresxj(n) , capturing the exponential nature of the search space size as follows:

N(n) = b
∑

j
λjxj(n) (1)

The subproblem featuresxj(n) we consider can be divided into two groups:

• Structural:d(n), depth ofn in the conditioning search space;h(n), height of the subprob-
lem pseudo tree belown; w(n), induced width of the conditioned subproblem belown;
c(n), the number of problem variables in the subproblem belown.

• Cost-function related:U(n), heuristic upper bound on the subproblem solution cost below
n, as used by the Branch and Bound algorithm for pruning;L(n), lower bound on the
subproblem solution cost as derived from the current best (overall) solution.

If we instead consider the log complexity, Equation 1 becomes the following:

logN(n) =
∑

j

λjxj(n) (2)

Finding suitable parameter valuesλj can thus be formulated as a well-knownlinear regression
problem. In other words, given a set ofm sample subproblemsnk and their respective complexities
N(nk), 1≤k≤m, we aim to find parametersλj that minimize the mean squared error:

MSE =
1

m

m
∑

k=1

(

∑

j

λjxj(nk)− logN(nk)
)2

(3)

The optimal selection ofλj ’s can be computed using theordinary least squaresmethod: We take
each sample subproblem’s features as a row of the design matrix X (i.e.,Xi,j = xj(ni)) and letY
with Yi = log(N(ni)) denote the column vector of log subproblem sizes. With||·|| as the Euclidean
norm, we then minimize||XΛ − Y ||2 through the closed-form expressionΛ̂ = (XTX)−1XTY .
Optionally applyingridge regressionfor regularization we get:

Λ̂ = (XTX + αI)−1XTY (4)

whereI is the identity matrix andα ∈ R a small constant (e.g.α = 0.01). Given the learned
parameterŝλj we can then predict the (log) complexity of a new subproblemn′ as:

log N̂(n′) =
∑

j

λ̂jxj(n
′) (5)

In the following we briefly describe how we can obtain the sample set of subproblems required to
learn the parameter valuesλ̂j of the regression model.

3.2 Subproblem Sampling

Recall first that AND/OR Branch and Bound is a depth-first search scheme. Second, we realize that
any leaf node that is generated is a subproblem in itself (of size 1) and as the algorithm backtracks
from the leaf the solved subproblem expands in size. Hence obtaining a single sample subproblem
is straightforward: we run the search for a limited number ofoperations and take the largest solved
subproblem as the sample. To obtain multiple different samples, we introduce randomness in the
value choices of the search up to a certain depth, below whichthe algorithm continues to use the
heuristic upper bound as a value selection heuristic as before.

For the parallel results in the following section, for a given problem instance we sampled 10 sub-
problems each of size approx. 10,000, 40,000, 80,000, 120,000, 160,000, and 200,000 nodes, for
a total of 60 samples. This sampling process takes around 10 minutes per problem instance and is
performed offline at this stage – eventually it will be fully integrated into the parallel scheme.
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(b) Pedigree13, 20 CPUs / 200 subproblems
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(c) Pedigree31, 100 CPUs / 1000 subproblems
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(d) Pedigree51, 100 CPUs / 1000 subproblems
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(e) Pedigree19, 324 CPUs / 3240 subproblems
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(f) Pedigree41, 10 CPUs, 100 subproblems
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(g) Pedigree31, 100 CPUs / 1000 subproblems
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Figure 3: (a)–(e): Subproblem statistics for select runs. Shown are each subproblem’s complexity
as well as the depth of its root in the central search space (plotted against second y-axis).(f)–(h):
Scatter plots of subproblem complexities against regression estimates.

4 Empirical Results

This line of work is an ongoing effort, with a more comprehensive study to be carried out in the
future; here we present some early results. We note that finding suitable benchmark problems is not
an easy feat: if problems are too simple, parallelization ismost likely detrimental overall, due to
preprocessing and overhead from the distributed scheme. Many very hard problems, on the other
hand, will still remain infeasible for practical purposes,in particular since every experiment binds a
potentially large number of shared parallel resources for an extended period of time.

We report on five haplotyping problems from the domain of genetic linkage analysis, which corre-
spond to MPE queries over Bayesian networks. With sequential runtimes from under one hour to
over six days, we varied the number of CPUs depending on the problem complexity, since massive
parallelism is futile for relatively simple problems. For each instance below,n is the number of
problem variables,k its maximum domain size,w the induced width, andh the pseudo tree height.

Table 1 contains results in terms of parallel runtime with varying levels of parallelism, depending
on overall problem complexity. Also included are sequential solution times (using plain AOBB)
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sequential CPUs time spd CPUs time spd
pedigree41 2,247 5 556 4 10 326 7
pedigree13 12,662 10 1,243 10 20 748 17
pedigree31 92,078 50 2,078 44 100 1,134 81
pedigree51 570,411 100 6,382 89 324 2,275 251
pedigree19 1,659,324 324 8,396 198

Table 1: Sequential and parallel runtime results for different number of CPUs (number of subprob-
lems is always ten times number of CPUs). “spd” is speedup vs.sequential. All times in seconds.

and relative speedup. Figure 3 shows detailed subproblems statistics: (a) through (e) depict the
complexity of the individual subproblems for select runs and allow us to assess load balancing; (f)
through (h) directly contrast the complexity estimates from the learned regression model with the
actual subproblem complexities, enabling evaluation of the prediction quality.

Pedigree41 (n = 1062, k = 5, w = 33, h = 100) : Solved sequentially in under one hour, this
problem doesn’t leave room for much parallelism and using more than 10 CPUs would add little
benefit. The subproblem complexities, however, seem fairlybalanced (Fig. 3(a)).

Pedigree13 (n = 1077, k = 3, w = 32, h = 102) : Sequential AOBB takes about 3 1/2 hours on this
problem, using 10 CPUs yields almost perfect linear speedup. The effect doesn’t hold as strongly
for 20 CPUs, but the time improvement is still pronounced. The load balancing is acceptable as well
(Fig. 3(b)), however we found that the underlying model predictions (not pictured) are many orders
of magnitude different from the actual complexities, whichwill need further investigation.

Pedigree31 (n = 1183, k = 5, w = 30, h = 85) : We obtain favorable speedups with up to 100
processors. Similarly, the distribution of subproblem complexities seems relatively balanced (Fig.
3(c)). The underlying estimates, however, are again not very accurate (Fig. 3(g)).

Pedigree51 (n = 1152, k = 5, w = 39, h = 98) : One of the two problems where using all available
324 CPUs makes sense, yielding a substantial speedup. The subproblem complexities are not quite
as balanced (Fig. 3(d)) and the underlying predictions quite crude (Fig. 3(h)), but it does not appear
to impact the overall solution time negatively.

Pedigree19 (n = 693, k = 25, w = 25, h = 98) : The hardest problem in this set, its parallel
speedup is a bit less distinct. We think this is due to the considerable imbalance across subproblems
(Fig. 3(e)); in fact the overall time is dominated by a few long-running subproblems.

Overall, however, we observe very reasonable parallel speedups across instances; load balancing
seems fairly effective, with the exception of pedigree19, which we need to investigate more closely.
However, while our framework appears to generally enable effective load balancing, the accuracy of
the underluing estimates is mediocre at best; further research is needed here as well.

5 Conclusion & Future Work

We have developed a distributed Branch and Bound framework that uses learning to achieve better
load balancing on a computational grid. In particular, we proposed to train a linear regression model
on structural and cost-function based features of sample subproblems. The resulting model is then
used to determine a suitable parallelization of the entire problem search space.

Early results shown in Section 4 have shown promise, but alsohighlighted areas for future work.
We were able to obtain very good parallel speedups for very complex as well as (using fewer CPUs)
relatively simple problems and generally observed effective load balancing. However, we also found
that in most cases the learned regression model didn’t predict complexities very accurately, some-
times leading to imbalanced subproblem complexities. The most notable example in this regard was
pedigree19, which will require more in-depth analysis.

Future work will involve identifying additional features to add to the model, experimenting with
varying sample sizes, and, most importantly, a more extensive empirical evaluation of the various
aspects of our scheme on more problem instances. Another path worth investigating might be using
non-linear models and to compare their performance to the current linear regression.
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