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Abstract

One popular and efficient scheme for solviexr
actly MPE/MAP and related problems over graph-
ical models is depth-first Branch and Bound. How-
ever, when the algorithm exploits problem decom-
position using AND/OR search spaces, its any-
time behavior breaks down. This paper 1) ana-
lyzes and demonstrates this inherent conflict be-
tween effective exploitation of problem decompo-
sition (through AND/OR search spaces) and the
anytime behavior of depth-first search (DFS), 2)
presents a first scheme to address this issue while
maintaining desirable DFS memory properties, 3)
analyzes and demonstrates its effectiveness. Our
work is applicable tany problem that can be cast
as search over an AND/OR search space.

Introduction

a feasible solution is easy but an optimal one is hard, depth-
first Branch and Bound generates solutions that get better an
better over time, until it eventually discovers an optimaéo
Thus it can function also as an approximation scheme for oth-
erwise infeasible problems or when time is limifdd].

Indeed, in the 2010 UAI challenge participating Branch
and Bound solvers performed competitively wrt. approxima-
tion (placing 1st and 3rd in some categories). But we also ob-
served an inability to produce even a single solution on some
instances, especially when the time bound was small. Thus
motivated, this paper will demonstrate that the issue iseho
in the underlying AND/OR search space.

Originally introduced to graphical models to facilitate
problem decomposition during search (€.3]), these search
spaces can be explored by any search strategy. When tra-
versed depth-first, however, all but one decomposed subprob
lem will be fully solvedbefore a single overall solution can be
composed, voiding the algorithm’s anytime charactesstic

This paper's main contribution is a new Branch and

Max-product problems over graphical models, generallyBound scheme over AND/OR search spaces, caleddth-
known as MPE or MAP, have many applications with prac-Rotating AND/OR Branch and Bound (BRAOBB#t ad-
tical significance, ranging from computational biology anddresses the anytime issue in a principled way, while maintai
genetics to scheduling tasks and coding networks. One-estaind the favorable complexity guarantees of depth-firstcfear
lished and efficient class of algorithms for solving thesgbpr ~ The algorithm combines depth-first and breadth-first explo-
lems exactly is depth-first Branch and Bound over AND/ORration by periodically rotating over the different subpiesbs,
search spaces. Developed in the past decade within the proach of which is processed depth-first.
abilistic reasoning and constraint communities, thesehmet  Experimental evaluation on a variety of benchmark do-
ods are effective because they use sophisticated loweidbourmains compares BRAOBB against one of the best variants of
schemes such as soft arc-consistef@yor the Mini Bucket ~ AND/OR branch and Bound search, AOHE8], and against
heuristic[4; 9], because they avoid redundant computationan “ad hoc” fix that we suggest, which relies on a heuristic to
using caching schemes, and most significantly, because theickly find a solution to each subproblem before reverting
take advantage of problem decomposition by exploring ario depth-first search. The empirical results demonstraie-su
AND/OR search spackL 1] or an equivalent representation. rior anytime behavior of BRAOBB, especially over problem-
The efficiency of these algorithms was established in severatic cases where standard AOBB and its ad hoc fix fail. In
evaluations, including recent UAI competitiol, and their ~ particular, we obtained good performance on two very hard
properties (for exact computation) are well documehée®; instances from the 2010 UAI challenge (Figure 5).
10]. The work presented in this paper is focused on optimiza-
A principled alternative is presented by best-first schemegion problems defined over graphical models. As such our re-
but while provably superior in terms of number of node ex-sults are also relevant for related schemes like recursite ¢
pansions, these often fail when a problem has large induceditioning [2] and value eliminatiod1] in the area of prob-
width; moreover, they can only provide a solution at termi-abilistic reasoning, or BTD (Backtracking Tree Decomposi-
nation[10]. Depth-first search is therefore often preferredtion [6]) in constraint optimization. We note, however, that
because of its flexibility in working with bounded memory the presented concepts carry over to combinatorial AND/OR
and because of itanytime behavior Namely, when finding search spaces in general.



AND/OR Search Trees and Graphs : Given a graphi-
cal model instance with variable¥ and functionsF', its
primal graph(X, E), and a pseudo treg, the associated
AND/OR search treeonsists of alternating levels of OR and
AND nodes. lIts structure is based on the underlying pseudo
tree7 : the root of the AND/OR search tree is &R node
labeled with the root of” . The children of an OR nodgX;)
are AND nodeslabeled with assignment§X;, ;) that are
consistent with the assignments along the path from the root
the children of an AND nodéX;, z;) are OR nodes labeled
with the children ofX; in 7, representing conditionally in-
dependent subproblems.

Identical subproblems, identified by their context (the par
tial instantiation that separates the subproblem from ¢isé r
of the network), can be merged, yielding dentext-minimal
AND/OR search grap[8]. It was shown that, given a pseudo
tree7 of heighth, the size of the AND/OR search tree based
on 7 is O(n - k™), wherek bounds the variables’ domain
size. The context-minimal AND/OR search graph has size
O(n- k*7), wherew* is the induced width of the problem
graph along a depth-first traversalBf[3]. Note that in Fig-
ure 1(a) the AND nodes faB have two children each, rep-
resenting independent subproblems and thus demonstrating
problem decomposition.

Given an AND/OR search spacer, a solution subtree

The remainder of this paper is structured as follows: SecS¢ls; i a tree such that (1) it contains the root%f ; (2)
tion 2 introduces the underlying concepts while Section 3f & nonterminal AND node: € 57 is in Sols, then all its
identifies the central issue and provides empirical evidenc children are inSols. ; (3) if a nonterminal OR node < St
The new algorithm BRAOBB is proposed in Section 4 and itsiS in Sols;- then exactly one of its children is iflol s, .

properties analyzed. Section 5 presents experimentadtsesu AND/OR Branch and Bound (AOBB) is a state-of-the-
and analysis before Section 6 concludes. art algorithm for solving optimization problems such as max

product over graphical models. The edges of the AND/OR
search graph can be be annotated by weights derived from
2 Background the set of cost functiong’ in the graphical model; finding

We consider a MPE (Most Probable Explanation, sometime{€ OPtimal-cost solution subtree solves the stated opéimi
also MAP, Maximum A Posteriori assignment) problem overtion task. Assuming a maximization query, AOBB traverses
a graphical model(X, F, D,max,[[). F = {fi,...,f} the Welghte_d contex_t-mlnlmal AND/OR graph in a depth-first
is a set of functions over variabléé = {X;,..., X, } with ~ Manner while keeping track of the current lower bound on
discrete domain®) = {D,,...,D,}, we aim to compute the maximal solution cost. A node will be pruned if this

maxy [[, f;, the probability .of the most likely assignment. lower bound exceeds a heuristic upper bound on the solution

The set of function scopes implies a primal graph and, giver{° the subproblem below, often obtained by solving a re-

an ordering of the variables, anduced graph(where, from laxed problem (e.g. through Mini Buckefg]). The algo-
last to first, each node’s earlier neighbors are connectitt) w rithm interleaves forward node expansion with a backward

a certaininduced width Another closely related combinato- COSt revision or propagation step that updates node values
rial optimization problem is theveighted constraint problem ~ (C@pturing the current best solution to the subproblemexot
where we aim to minimize the sum of all costs, i.e. computeat each node), until search terminates and the optimalsplut
miny Y, f;. These tasks have many practical applicationg'as been found].
but are known to be NP-hard.

The concept oAND/OR search spacesas recently been 3  Anytime versus AND/OR
introduced to graphical models to better capture the stract
of the underlying graph during searf®l. The search space
is defined using @seudo treef the graph, which captures
problem decomposition:

Figure 1: (a) Example primal graph of a graphical model
with six variables, (b) its induced graph along orderihg-

A, B,C,D,E,F, (c) a corresponding pseudo tree, and (d)
the resulting context-minimal AND/OR search graph.

We will use AOBB to denote the algorithm above in its spe-
cific graphical models context as well as a generic hame for
any depth-first Branch and Bound scheme over an AND/OR
search space. As a depth-first scheme one would expect
DEFINITION 1. A pseudo treef an undirected graplt; =  AOBB to quickly produce a non-optimal solution and then
(X, E) is a directed, rooted tre§” = (X, E’), such that gradually improve upon it, maintaining the current best one
every arc ofG not included inE’ is a back-arc in7 , namely  throughout the search. However this ability is compromised
it connects a node ifi to an ancestor irf . The arcs inE’ in the context of AND/OR search.

may not all be included k. Specifically, in AND/OR search spaces depth-first traversal



of a set of independent subproblems will solve to completion pedigree30x1, 10 (n=1289 k=5 w=21 h=108)

all but one subproblem before the last one is even considered 136

As a consequence, the first generated overall non-optimal so 437 b S P o |
lution contains conditionally optimal solutions to all gubb- ~ 138l % x
lems but the last one. Furthermore, depending on the problem 2 |l *
structure and the complexity of the independent subproblem £ -1;10 |
the time to return even this first non-optimal overall salnti § ¥
can be significant, practically negating the anytime beairavi B 14 4
of depth-first search (DFS). i ; N
13 decreasing, -0 |

3.1 Subproblem Ordering s 10 100 1000 10000
In certain cases, the above suggests a simple remedy: if de- Search time in seconds
composition yields only one large subproblem and several pedigree41x1, i7 (n=1062 k=5 w=33 h=100)
smaller ones, the latter can be solved depth-first in redigtiv Y — N e
little time, to be then combined with the incrementally im- -122 e K
proving solutions of the larger subproblem. Thus for angtim ~ 12 gg**
behavior an AOBB algorithm would need to process indepen- = :};g igﬁ*
dent subproblems from “easy” to “hard”. 2 130 g%

To demonstrate the practical impact of subproblem order- & -132 K
ings, we use a simple heuristic that takes the induced width & -134g§
as a measure of subproblem hardness (motivated by its ex- };g increasing ¥~ |
ponential role in the asymptotic complexity), i.e. we mod- -140 ‘ ‘ ecreasing -0~
ify AOBB such that subproblems with smaller induced width 1 10 100 1000 10000
will be processed first (in the general description of AOBB Search time in seconds
the subproblem ordering is left unspecified). . .

Figure 2 contrasts the anytime performance of AOBB us- - pedlgree34X2115(n_2320 k_S W_31h_102)
ing this “increasing” subproblem order against the inverse i | e
one (“decreasing”) by plotting the probability of the best a ~ o6 |
signment found over time on a set of example problems; all 2 s | X
other aspects of the algorithm remain constant. Pedigrde30 § 230 ¥
in particular features exactly one single complex subabl g o3 | ¥
and a number of relatively simple ones; in this case process- 2 ~ *
ing subproblems by increasing induced width right away pro- ~ 2% iimmsm e
duces a non-optimal solution that improves rapidly. The in- 236 1 ’fdecreasmg @ |

verse order yields the first solution only after about 90 min- 238 1 0 100 1000 10000

utes — the one complex subproblem has been fully solved and
the overall solution is already optimal. Pedigree41x1 has a
similarly advantageous structure and thus yields siméar r Figure 2: Impact of subproblem ordering on AOBB. The
sults — with the distinction that the inverse subproblermeord number of variables, the max. domain sizg, the induced
does not produce any solution at all within 24 hours. widthw along the chosen ordering, as well as the height of the
In case of pedigree34x2, however, decomposition yieldgorresponding pseudo tréeare specified for each network.
two complex subproblems: the increasing subproblem order
still outperforms its inverse, yet it returns the initialgion )
only after about 1,000 seconds. In fact, no possible subpro3-2 Greedy Subproblem Dive
lem ordering can lead to acceptable anytime behavior in thig\nother relatively straightforward remedy that can be \@ew
case due to the structure of subproblems, clearly highifight as an “ad hoc” fix is the following: Every time decomposition
the limits of this approach. is encountered within the search space, we will try to greed-
Independent of anytime behavior, we point out that in-ily find a single initial solution to each independent sulippro
corporating different subproblem orderings impacts tigeal lem before successively solving each of them to completion
rithm’s overall efficiency (i.e., the time to finding and proy ~ depth-first, through normal AOBB. To obtain this initial so-
an optimal solution): knowing the solution to one subprob-lution the algorithm can perform a greedy “dive” into each
lem can aid the pruning of Branch and Bound in the next onesubproblem by only considering one value for each variable
to varying degrees. However, this issue has not been treatedong the path (in case of the Mini Bucket heuristic, it isyeas
systematically in the literature for graphical modelshmipo-  to see that this is equivalent to a forward pass over the bucke
radic experiments also suggesting an easy-to-hard orgler, ustructure[7]).
ing some heuristic to determine subproblem complebaty Clearly, the choice of the dive path is crucial for the al-
This general problem is outside the scope of the present pgorithm’s performance. Namely, if the chosen path leads
per, however. to a dead end (zero probability), the dive will be futile and

Search time in seconds



not yield a subproblem solution. And in fact experiments inAlgorithm 1 Breadth-Rotating AOBB

Section 5Wi|l demonstrat_e that the resu_lting performaru:e d Given: Graphical model(X, F, D, max, []) and pseudo treq”
pends heavily on the quality of the heuristic, which oftee-pr with root X, rotation threshold?

vents satisfactory anytime behavior. In the next section Weyytput: cost of optimal solution

will therefore propose a new search strategy that addresses: ROOT« {(X,)} // generate root subproblem

the anytime issue over AND/OR search spaces in a principled: pushROOTto end of GLOBAL

manner. 3: while GLOBAL: 0
4:  LOCAL <« front(GLOBAL // next subproblem in queue
. 5.  for 2 + 1to Z oruntil LOCAL= ()
4 Breadth-Rotating AOBB or until childSubprob(OCAL) # §
In the following we develop a new search scheme called6: n < top(LOCAL) // top node from current subproblem
Breadth-Rotating AND/OR Branch and Bound (BRAOBB) 7: -+ Il caching and pruning as in AOBB
that addresses the issue of anytime performance ovef: if n = (X) is OR node

for z; € D;
create AND child X, x ;)
add({X;, z;) to top of LOCAL

AND/OR search spaces. It combines depth-first exploratiorlo'_
with the notion of “rotating” through different subproblem

in a breadth-first manner. Namely, node expansion still oc+ 5. P SR
curs depth-first as in standard AOBB, but the algorithm takeégz els;if n . 1</f<—x Jghli?dfgng(r;?io)le
turns in processing subproblems, each up to a given numbey: generate OR childrefty), ..., (Y;)
of operations at a time, round-robin style. 15: if m=1 // no decomposition
To motivate this approach, consider again that a solution i46: push(Y1) to top of LOCAL
represented by solution treeover an AND/OR search space, 17: else ifm > 1 // problem decomposition
guided by a pseudo tree. A pure DFS scheme will construct8: for » < 1tom _
the different branches of a solution tree one by one, ensurt>: NEW <« {(¥)} // new child subproblem

ing optimality for each branch before moving to the next. 1. if Ch”drg#é;ﬁ%w/t/onbgcllégffeLOBAL

To restore anytime behavior, we instead aim to develop alb5. propagate() // upwards in search space
branches of the solution tree “simultaneously”, whichwe em 53. it LocAL= ¢ // subproblem not yet solved
ulate by rotating through them. 24: pushLOCAL to end of GLOBAL

More systematically, the algorithm repeats the following25: return value(Xo)) // root node contains optimal solution
high-level steps until completion:

;' ';Ar?)\lcee:sr;?jitgtr?;?:stf Sr?t)l(lt ;E)he:r.subproblé’m no pruning). Part (a) shows the first 12 nodes expanded dur-
' _ e ' ing the first seven iterations of the outer while loop as feio
e Pis solved optimally, (1) Taking the overall problem as subproblem PO, expatid
e P decomposes into child subproblems, or and (A, 0) before reaching the thresholi= 2. (2) With no
e apredefined threshold of operations is reached.  decomposition so far rotation returns to subproblem PO. Ex-
The threshold is needed to ensure the algorithm does ngiand(B) and(B, 0), yielding subproblems P1 and P2 rooted
get stuck in one large subproblem (where the other two conat (C') and (E), respectively, which are added to the queue.
ditions do not occur for a long time). Furthermore, in order(3) Rotate to subproblem P1 and expgidd) and(C, 0). (4)
to focus on a single solution tree at a time, a subproblem iRotate to subproblem P2. Expaf#) and(E,0). (5) Ro-
only considered “open” if it does not currently have any opentate to subproblem PO but skip it at this point, since itscchil
child subproblems, as illustrated below. subproblems P1 and P2 are still opef) Rotation moves
Algorithm 1 gives more detailed pseudo code for theto subproblem P1. Expan@) and(D,0), discover a leaf
scheme (with some details from standard AOBB omitted, cfand propagatg7) Rotate to subproblem P2, expaf¥) and
[9]). The key element lies in rotating over the different sub-(F,0) —which, as aleaf, is propagated to yield the first overall
problems of the search space; by organizing these in a glob&plution.
first-in-first-out queue GLOBAL), we emulate breadth-first ~ Figure 3(b) illustrates how the search then proceeds to
exploration across the different branches of the solutiea.t take turns solving subproblems P1 and P2 to completion
The input parametef determines how many nodes should be (nodes 13-22) before reopening subproblem PO. Expansion
processed before moving on to the next subproblem (if non@3 yields two new independent subproblems P3 and P4; their
of the other conditions are satisfied first). Each subproblensolution is depicted by nodes 24-41. After that subproblem
is itself explored depth-first (via a local last-in-firstimtack PO gets reopened, where expanding nodes 42—-44 again yields
of nodes,LOCAL); whenever a new level of decomposition two new subproblems P5 and P6, and so forth.
is encountered, as captured by the pseudo tree, the rgsultin i .
child subproblems are pushed to the end of the global queud.1 Analysis of Breadth-Rotating AOBB

Finally, subproblems are only considered in the rotation ifCompIexity: We assume a graphical model withvariables
they don’t currently have any open child subproblems. Th&yose domain size is bounded by Let w* be the induced

following example illustrates: width of the problem along a given ordering althe height
Example : Figure 3 demonstrates the scheme’s applicatiorof the corresponding pseudo trée Despite the breadth-first
(Z =2) to the AND/OR search graph in Figure 1 (assumingcomponent the algorithm maintains the asymptotic complex-



@ B
G (

=)
\t ‘\»F«/‘ = A EF ‘
o)
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(a) Expansion of nodes 1-12

Figure 3: BRAOBB explorationf = 2) at different stages. Nodes are numbered in order of the@mesion.

ity of standard AOBB: Significance of Z : The rotation thresholdZ keeps the
THEOREM 2. When searching an AND/OR search tree (i.e.,ScNéme from getting stuck in large subproblems, where the
without caching of redundant subproblems), BRAOBB ha’gther two “natural” rotation conditions would not occur for
time complexityO(n - k") and space compléxity linear in @ long time. As we will see in the next section, however,
n. When searching an AND/OR search graph (with fanin practical problems we typically encounter frequent sub-

. . : w* roblem branching. Th& threshold is thus practically never
caching), time and space complexity @¢n - k). Peached and its vaglue has little effect. P g

Proof. BRAOBB explores the same underlying AND/OR - .
search space as standard AOBB, hence its asymptotic tin@ Empirical Evaluation
complexity remains unchanged, i.e. exponentidi fior tree  To validate and compare the performance of the various
and exponential im* for graph search. Space complexity for schemes we recorded their anytime behavior on a variety
AND/OR graph search is dominated by the caching and thuef problem instances using a common variable ordering and
also remains unchanged exponentiakih. In case of tree  Mini Bucket heuristic for each instance (24 hour timeout),
search, recall that subproblems with open child subproblemsubproblems were ordered by increasing width (cf. Section
are not processed further. Therefore every variable will ap3.1). We ran “plain” AOBB, AOBB with the dive extension,
pear in at most one subproblem at any given time. And sinceand BRAOBB; as a baseline we also included OR Branch and
each subproblem is processed depth-first, i.e. in linearespa Bound (without problem decomposition).
the space across all subproblems is also linear in O Our initial test set was comprised of 19 pedigree instances,
) o 50 randomly generated grid networks, and 8 mastermind
It is worth pointing out that these are worst-case boundgjame instances, all part of the UAI 2008 evaluation. To
that are often not met in practice, because the Branch anghsyre the presence of more than one complex subproblem,
Bound scheme is typically very efficient and prunes largeye created additional versions of each network with two and
parts of the search space. In particular, the exponentiai-me three identical copies connected at the root (signified by th
ory bound for AND/OR graph search is usually not an issuewp” and “x3” suffix, respectively), yielding a total of 57
since only relatively few cache entries will be written. pedigree (each run with three different heuristics), 158,gr
Comparison with standard AOBB : First, we expect that and 24 grid instances and resulting in over 60,000 CPU hours
the anytime performance of BRAOBB will be robust with re- worth of experiments (enabled by a 320-core cluster).
spect to different subproblem orderings, since the aligorit Figure 4 presents results on eight instances with more than
is not forced to “commit” to a single subproblem — which we one complex subproblem, on which plain AOBB does poorly
identified as the main reason for the poor anytime behavior ofvrt. anytime. OR Branch and Bound finds an early lower
plain AOBB in Section 3.1. We will confirm this experimen- bound in three cases, but provides very little improvement
tally in Section 5. over time and never gets close to the optimum. The dive
Second, the actual number of nodes explored by BRAOBRBextension shows acceptable anytime behavior only on three
might differ from plain AOBB (for both graph and tree instances, confirming our conjecture that its performarse d
search), since the pruning behavior of the algorithm can bgends solely on the success of the initial dive — if misguided
impacted by the order in which nodes are explored and sulby the heuristic, the anytime behavior is predictably as bad
problem solutions produced: On the one hand, solving a sul®s, or even slightly worse than the plain scheme.
problem to completion before processing the next (in AOBB) The proposed BRAOBB, on the other hand, exhibits im-
might allow the algorithm to calculate a tighter upper boundpressive anytime performance on almost all instancesn ofte
using this optimal solution, resulting in better pruningi e by a large margin; in seven cases the first solution is pratluce
other hand, exploring subproblems concurrently in BRAOBBmMore or less instantly, even on pedigree51x3, where “plain”
might lead to a tighter overall lower bound through combin-and “dive” do not return anything within 24 hours.
ing solutions across subproblems as they are discovered (in Table 1 summarizes the entire set of experiments by show-
an anytime fashion). ing, at different points of time, the nhumber of instances for
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Figure 4: Anytime profiles of plain AOBB, AOBB with subprolntedive, BRAOBB, and OR Branch and Bound on selected
instances with more than one hard subproblem (3 grids, 4gpesli 1 mastermind network).

which any solution was found, for which the optimal solu- second it provides an initial solution on 293 instances (out
tion was found, and for which optimality was proven (i.e. of 345), compared to just 98 for plain AOBB and 131 for
the algorithm terminated). The results confirm that BRAOBBthe dive extension; this lead is maintained for higher time
yields superior anytime performance: for example, within 1bounds. BRAOBB also finds the optimal solution quicker



Table 1: Summary statistics over 345 instances for eachnsehgiven are the number of cases for which, within the raspmgec

time bound, (1) any solution was found, (2) the optimal solutvas found, (3) optimality was proven.

Time bound
Isec | 5sec | 10sec | I min [ 5 min [ 1 hour [ 24 hours
Pedigree networks (171 total)
plain | 52/19/6 | 70/36/17 | 75/42/24 | 87/56/48 | 101/76/68| 111/90/86 | 129/117/108
dive 76/16/5 | 86/29/13 | 94/38/20 | 105/53/48| 116/69/64| 127/89/86 | 135/114/105
rotate | 153/26/2| 157/40/15| 160/47/24| 162/59/48| 164/74/60| 165/98/84 | 167 /1277102
or 73/6/1 761715 77/10/5 79/10/9 82/12/11 87/16/15 90/22/21
Grid networks (150 total)
plain | 38/10/0 | 48/19/0 58/32/4 84/62/52 | 101/82/76| 128/120/113| 149/148/147
dive 47/6/0 52/12/0 55/24/1 82/54/37 | 97/78/71 | 121/111/104| 147 /147 /146
rotate | 122/16/0| 128/27/0 | 129/35/1 | 136/69/38| 143/86/73| 146/126/110| 149/149/147
or 45/0/0 45/1/0 46/1/0 53/21/0 571412 64/10/9 74/21/21
Mastermind networks (24 total)
plain 8/8/1 8/8/3 8/8/3 10/10/4 13/13/7 17/17/712 24124124
dive 8/8/1 8/8/3 8/8/3 11/11/5 12/12/6 21/21/19 24124124
rotate | 18/18/1 18/18/3 18/18/3 18/18/3 21/21/4 24124119 24124124
or 0/0/0 0/0/0 0/0/0 o/0/0 o/0/0 0/0/0 0/0/0
pdbli24, i3 (n=337 k=81 w=33 h=57) challenge where plain AOBB failefb]. Out of the ten in-
195 ‘ ‘ ‘ ‘ stances made available, eight were solved in seconds_ by stan
I ol dard AOBB and hence not further considered. Anytime re-
_ R %E g sults on the remaining two, modeling protein folding and
Zg 2051 .. R w o] protein-protein interaction, are shown in Figure 5, onceeno
£ 210 s ¥ o demonstrating superiority of BRAOBB (note the large do-
g st Pt main size of pdb1i24, the massive induced width of protein1,
B 000 % plain - and that optimality for either problem could not be proved
T s ;; e o within 24 hours). _
230 ‘ ‘ ‘ or % To investigate to what extent the different schemes de-
1 10 100 1000 10000 pend on the heuristic’s accuracy, Figure 6 (top) contrashpl
Search time in seconds AOBB, dive, and BRAOBB each with two different heuris-
tics, parametrized by the Mini Buckétbound (where higher
proteinl, 114 (n=14306 k=2 w=1122 h=1282) is better)[7]. Plain AOBB fails or does very poorly due to
-13160 ‘ ‘ PR problem decomposition; AOBB with dive depends very much
-13170 AL BB “ on the heuristic and fails with the weaker one. BRAOBB,
| M however, exhibits acceptable anytime behavior even wigh th
2 el weaker heuristic.
£ im0l Going back to Section 3.1, Figure 6 (middle) compares
= 13220 | plain ¥ the performance of BRAOBB with subproblems ordered by
< 13230 | g dive e increasing and decreasing width. In contrast to AOBB (in-
13240 | g rota(t; e cluded for reference) our new scheme is very robust and de-
-13250 : : : : livers nearly the same performance in both cases. Finally,
1 10 100 1000 10000

experiments with different values for the rotation thrddho
Z € 10,1000, 100000, 10000000 in Algorithm 1 showed no
significant difference in performance as exemplified by Fig-
ure 6 bottom, confirming the analysis in Section 4.1.

Search time in seconds

Figure 5: Anytime profiles on two example instances from
the UAI'10 challenge (top: protein folding, bottom: pratei

protein interaction).
6 Summary

Exploiting problem decomposition in search methods has
than the other schemes, e.g., for 100 instances after 10 se§een proven to yield significantly better overall comphexit
onds (versus 80 instances for plain). Finally, we see tle@tpl in many cases. Yet this paper has demonstrated how it can
AOBB has a slight edge in terms of proving optimality, con- be in direct conflict with the depth-first nature of Branch and
firming that exploring subproblems concurrently can slight Bound, thus impairing the important anytime properties of

impair the pruning (cf. Section 4.1).
Notably, BRAOBB did indeed restore anytime perfor-

this class of algorithms.
We devised a “quick fix” that employs an initial greedy

mance on example problems from the UAI 2010 inferencesubproblem dive, but whose performance was lacking due to



pedigree31x2 (n=2366 k=5 w=30 h=85)
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The main contribution of this work is the new scheme
Breadth-Rotating AND/OR Branch and Bound (BRAOBB)
which periodically iterates over the different subprobdeim
a “breadth-first” manner but was shown to retain many de-
sirable properties of the depth-first strategy. In particuts
memory complexity remains linear in the number of variables
(not accounting for caching).

We presented a large set of successful experiments that
confirmed vastly improved anytime performance, especially
in cases where standard depth-first Branch and Bound and its
“ad hoc” extensions fail, including two hard instances from
the UAI 2010 challenge. Through analysis and experiments
we also showed our new scheme to be robust with respect to
the order of subproblems as well as the accuracy of the guid-
ing heuristic.
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