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Abstract. The recently introduced notion of hypertree width has
been shown to provide a broader characterization of tractable con-
straint and probabilistic networks than the tree width. This paper
demonstrates empirically thatin practicethe bounding power of the
tree width is still superior to the hypertree width for many benchmark
instances of both probabilistic and deterministic networks.

1 INTRODUCTION

Inference in graphical models is known to be time and space expo-
nential in the problem graph’s tree width. In practice, however, this
measure is often inaccurate, since it ignores the effects of determin-
ism in problem solving, which can, for instance, lead to pruning of
large parts of the search space. To that end, in 2000 [3] introduced
a parameter called hypertree width and showed that for constraint
networks it is more effective in capturing tractable classes. In [4],
its applicability was extended to inference algorithms over general
graphical models having relational function specification.

In this paper we explore the practical significance of the hypertree
width against the tree width from a more practical angle. We show
empirically, on probabilistic and deterministic benchmarks, that in
most cases the tree width yields a far better predictor of instance-
based complexity than the hypertree width, except when the problem
has substantial determinism.

The outline of this paper is as follows: Section 2 gives a brief
overview of the two decomposition schemes. Section 3 provides the
empirical results, and Section 4 concludes.

2 DECOMPOSITION SCHEMES

We assume the usual definitions of directed and undirected graphs,
hypergraphs, primal and dual graphs, and hypertrees. A graphi-
cal model is typically defined to be a set of real-valued functions
F = {f1, . . . , fl} over a set of variablesX = {x1, . . . , xn} with
domainsD= {D1, . . . , Dn}, together with a combination operator
like summation or multiplication. The scope of a functionfj , denoted
scope(fj), is the set of variables on whichfj is defined.

A common approach to solving graphical model problems is to
cluster variables and functions such that the resulting decomposition
exhibits tree structure:

DEFINITION 1 A tree decomposition of a graphical model is a triple
T =〈T, χ, ψ〉, whereT = (V,E) is a tree andχ andψ are labeling
functions that associate with each vertexv ∈ V two sets,χ(v)⊆X

andψ(v)⊆F , that satisfy the following conditions:
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1. For eachfj ∈F , there is at least onev∈V such thatfj ∈ψ(v) .
2. If fj ∈ψ(v), thenscope(fj)⊆χ(v) .
3. For eachxi ∈X, the set{v ∈V |xi ∈χ(v)} induces a connected

subtree ofT .

Thetree width ofT isw=maxv∈V |χ(v)|−1 . T is also ahypertree
decomposition if it satisfies the following additional condition:

4. For eachv∈V , χ(v)⊆
⋃
fj∈ψ(v)

scope(fj) .

In this case, thehypertree width of T is hw=maxv∈V |ψ(v)| .

Finding tree and hypertree decompositions of minimal width is
known to be NP-complete, therefore heuristic algorithms are em-
ployed in practice [4, 2]. Once a tree or hypertree decomposition
is available, it can be processed by the suitable version of a message
passing algorithm likeCluster-Tree Elimination (CTE)[4]. Allow-
ing a probabilistic function to be placed in more than one node will
lead to incorrect processing by CTE for any graphical model other
than constraint networks. To remedy this we modify multiple show-
ings of a function byflatteningall but one of them into a 0/1-valued
constraint.

Complexity bounds

The time complexity of algorithm CTE, when executed on a tree de-
compositionT with tree widthw, has been shown to be

O((r +m) · deg · kw+1) , (1)

wherer is the number of functions in the problem,m the number of
clusters inT , anddeg the maximum degree inT . The space com-
plexity isO(m·kw) [4].

By virtue of using a tree decomposition, however, the hypergraph
structure of the problem is completely ignored. Bound (1) does there-
fore not account for any determinism that might be present in the
function specifications. To that end, ifT is also a hypertree decom-
position, algorithm CTE can be adapted to exploit the hypergraph
structure. AssumingT has hypertree widthhw, the time complexity
of applying CTE can be shown to be

O(m · deg · hw · log t · thw) , (2)

wheret bounds the size of the relational representation of each func-
tion in the problem (i.e., the number of zero cost tuples in CSPs and
the number of non-zero probability tuples in belief networks). Space
complexity isO(thw) [3, 4].

We note that bound (2) indeed takes determinism into account by
using the parametert, which denotes the number of relevant tuples in
a function table. It is clear thatt≤kr≤kw, wherer is the maximum
function arity. Hence bound (2) can only yield tighter results when
the problem instance possesses a high degree of determinism. While
it has been shown that hypertree decompositions are strictly more
general than tree decompositions, it is unclear how the asymptotic
bounds compare for practical problem instances.



instance n k r t w hw R instance n k r t w hw R

Genetic linkage Coding networks
pedigree1 334 4 5 32 16 13 9.934 BN 126 512 2 5 16 56 21 8.429
pedigree18 1184 5 5 50 22 18 15.204 BN 127 512 2 5 16 55 22 9.934
pedigree20 437 5 4 50 24 16 10.408 BN 128 512 2 5 16 50 20 9.031
pedigree23 402 5 4 50 29 15 5.214 BN 129 512 2 5 16 54 21 9.031
pedigree25 1289 5 5 50 27 19 13.408 BN 130 512 2 5 16 53 21 9.332
pedigree30 1289 5 5 50 25 18 13.107 BN 131 512 2 5 16 53 21 9.332
pedigree33 798 4 5 32 31 21 12.944 BN 132 512 2 5 16 52 21 9.633
pedigree37 1032 5 4 32 22 13 4.190 BN 133 512 2 5 16 56 21 8.429
pedigree38 724 5 4 50 18 10 4.408 BN 134 512 2 5 16 55 21 8.730
pedigree39 1272 5 4 50 25 18 13.107 Dynamic Bayesian networks
pedigree42 448 5 4 50 24 16 10.408 BN 21 2843 91 4 208 7 4 -4.441
pedigree50 514 6 4 72 18 10 4.567 BN 23 2425 91 4 208 5 3 -2.841
pedigree7 1068 4 4 32 40 23 10.536 BN 25 1819 91 4 208 5 2 -5.159
pedigree9 1118 7 4 50 31 21 9.480 BN 27 3025 5 7 3645 10 2 0.134
pedigree13 1077 3 4 18 35 29 19.704 BN 29 24 10 6 999999 6 2 6.000
pedigree19 793 5 5 50 27 21 16.806 Digital circuits
pedigree31 1183 5 5 50 34 29 25.505 c432.isc 432 2 10 512 28 22 51.175
pedigree34 1160 5 4 32 32 25 15.262 c499.isc 499 2 6 32 25 25 30.103
pedigree40 1030 7 5 98 31 24 21.591 s386.scan 172 2 5 16 19 8 3.913
pedigree41 1062 5 5 50 35 25 18.010 s953.scan 440 2 5 16 66 38 25.889
pedigree44 811 4 5 32 28 22 16.256 Radio frequency assignment (WCSP)
pedigree51 1152 5 4 50 44 33 25.311 CELAR6-SUB0 16 44 2 1302 8 4 -0.689

Mastermind puzzle game (WCSP) CELAR6-SUB1-24 14 24 2 301 10 5 -1.409
mm 03 08 03 1220 2 3 4 21 14 2.107 CELAR6-SUB1 14 44 2 928 10 5 -1.597
mm 03 08 04 2288 2 3 4 31 20 2.709 CELAR6-SUB2 16 44 2 928 11 6 -0.273
mm 03 08 05 3692 2 3 4 40 25 3.010 CELAR6-SUB3 18 44 2 928 11 6 -0.273
mm 04 08 03 1418 2 3 4 26 17 2.408 CELAR6-SUB4-20 22 20 2 396 12 6 -0.026
mm 04 08 04 2616 2 3 4 38 24 3.010 CELAR6-SUB4 22 44 2 1548 12 6 -0.583
mm 10 08 03 2606 2 3 4 56 34 3.612

Table 1. Selected experimental results comparing the tree width and hypertree width based bounds.

3 EXPERIMENTAL RESULTS

We evaluated empirically the tree width and hypertree width bounds
on 112 practical probabilistic networks and 30 constraint networks.
Problem instances were obtained from various sources; all of them
are available online3.

To obtain a tree decomposition of a problem, we perform bucket
elimination along a minfill ordering (random tie breaking, optimum
over 20 iterations). The tree decomposition is then extended to a hy-
pertree decomposition by the method described in [2], where vari-
ables in a decomposition cluster are greedily covered by functions.

For each problem instance we collected the following statistics:
the number of variablesn, the maximum domain sizek, the max-
imum function arityr, and the maximum function tightnesst. We
also report the best tree width and hypertree width found in the ex-
periments described above.

We define the measureR := log10(
thw

kw ) . This compares the two
dominant factors of thew bound (1) and thehw bound (2). IfR
is positive, it signifies how many orders of magnitude tighter thew

bound is when compared to thehw bound, and vice versa for nega-
tive values ofR. Some select instances are shown in Table 1, the full
set of results is available in an extended version of this paper [1].

Out of the 112 belief networks, thehw bound was only superior
for 5 instances, and not by many orders of magnitude. On the other
hand, for genetic linkage instances with considerable determinism in
their CPTs, thehw bound is significantly worse, as is the case for
most other belief networks. This situation does not change much for
constraint problems, except for radio frequency assignment, where
thehw bound fares somewhat better, but only by a small margin.

In summary we can review that, in order for the hypertree width
bound to be competitive with, or even superior to, the tree width
bound, problem instances need to comply with several conditions;
foremost among these are very tight function specifications. The lat-
ter is promoted by large variable domains and high function arity,
which we found to be not the case for the majority of practical prob-
lem instances.

3 Repository at http://graphmod.ics.uci.edu/

4 CONCLUSION

The contribution of this paper is in exploring empirically the prac-
tical benefit of the hypertree width compared with the tree width in
bounding the complexity of algorithms over given problem instances.
Statistics collected over 112 Bayesian networks instances and 30
weighted CSPs provided interesting, yet somewhat sobering infor-
mation. We confirmed that while the hypertree is always smaller than
the tree width, the complexity bound it implies is often inferior to the
bound suggested by the tree width. Only when problem instances
possess substantial determinism and when the functions have large
arity, the hypertree can provide bounds that are tighter and therefore
more informative than the tree width.

The above empirical observation raises doubts regarding the need
to obtain good hypertree decompositions beyond the already substan-
tial effort into the search of good tree-decompositions, that has been
ongoing for three decades now.
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