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Abstract. The recently introduced notion of hypertree width hasl1. For eachf; € F, there is at least one € V such thatf; € (v) .
been shown to provide a broader characterization of tractable co: If f; €+ (v), thenscope(f;)C x(v) .

straint and probabilistic networks than the tree width. This papeB. For eachz; € X, the set{v € V|z; € x(v)} induces a connected
demonstrates empirically that practicethe bounding power of the subtree ofl" .

tree width is still superior to the hypertree width for many benchmarkpetree width of 7 is w — Mmazeey

) o Lo [x(v)|—1.7 is also ahypertree
instances of both probabilistic and deterministic networks.

decomposition if it satisfies the following additional condition:
4. ForeachveV, x(v)C Ufj cuv) Scope(fj) -
In this case, théaypertree width of 7 is hw =mazev [¢(v)] .

Inference in graphical models is known to be time and space expo- Finding tree and hypertree decompositions of minimal width is
nential in the problem graph's tree width. In practice, however, thisknown to be NP-complete, therefore heuristic algorithms are em-
measure is often inaccurate, since it ignores the effects of determirsioyed in practice [4, 2]. Once a tree or hypertree decomposition
ism in problem solving, which can, for instance, lead to pruning ofis available, it can be processed by the suitable version of a message
large parts of the search space. To that end, in 2000 [3] introducegassing algorithm likeCluster-Tree Elimination (CTEM]. Allow-

a parameter called hypertree width and showed that for constrainhg a probabilistic function to be placed in more than one node will
networks it is more effective in capturing tractable classes. In [4]ead to incorrect processing by CTE for any graphical model other
its applicability was extended to inference algorithms over generaihan constraint networks. To remedy this we modify multiple show-

graphical models having relational function specification. ings of a function byflatteningall but one of them into a 0/1-valued
In this paper we explore the practical significance of the hypertreonstraint.

width against the tree width from a more practical angle. We show
empirically, on prObabI!IStIC gnd deterministic benc'hmarks., that '”Complexity bounds
most cases the tree width yields a far better predictor of instance-
based complexity than the hypertree width, except when the problemihe time complexity of algorithm CTE, when executed on a tree de-
has substantial determinism. composition7 with tree widthw, has been shown to be

The outline of this paper is as follows: Section 2 gives a brief O((r +m) - deg - k“’“) ’ 1)

overview of the two decomposition schemes. Section 3 provides the h is th ber of funcii in th blem. th ber of
empirical results, and Section 4 concludes. wherér 1S the number of functions in the problem, the number o

clusters in7, anddeg the maximum degree iff . The space com-
plexity is O(m-k*) [4].
2 DECOMPOSITION SCHEMES By virtue of using a tree decomposition, however, the hypergraph
structure of the problem is completely ignored. Bound (1) does there-
We assume the usual definitions of directed and undirected graphfre not account for any determinism that might be present in the
hypergraphs, primal and dual graphs, and hypertrees. A graphfynction specifications. To that end, 7 is also a hypertree decom-
cal model is typically defined to be a set of real-valued functionsposition, algorithm CTE can be adapted to exploit the hypergraph

F ={f1,..., i} over a set of variable{ = {z1,...,zn} With  structure. Assuming™ has hypertree widthw, the time complexity
domainsD = {Dx, ..., Dy}, together with a combination operator of applying CTE can be shown to be

like summation or multiplication. The scope of a functigndenoted hw
scope(f;), is the set of variables on whigfy is defined. O(m - deg - hw -logt - 17) , 2)

A common approach to solving graphical model problems is towheret bounds the size of the relational representation of each func-
cluster variables and functions such that the resulting decompositiofion in the problem (i.e., the number of zero cost tuples in CSPs and

1 INTRODUCTION

exhibits tree structure: the number of non-zero probability tuples in belief networks). Space
complexity isO(t"*) [3, 4].
DEFINITION 1 Atreedecomposition of a graphical model is a triple We note that bound (2) indeed takes determinism into account by

T=(T,x,v), whereT' = (V, E) is a tree andy and+ are labeling using the parameter which denotes the number of relevant tuples in
functions that associate with each vertex V' two sets(v) C X a function table. Itis clear that< k" < k", wherer is the maximum
and+(v) C F, that satisfy the following conditions: function arity. Hence bound (2) can only yield tighter results when
1 - - - - the problem instance possesses a high degree of determinism. While
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instance [ n_ kT t [ w  hw ] R ][ instance [ n k T t | w  hw ] R ]

Genetic linkage Coding networks

pedigreeT 3344 5 32] 16 13 9.934 || BN_I26 512 2 5 16 56 21 8.429
pedigreel8 1184 5 5 50| 22 18 | 15.204 || BN.127 512 2 5 16 | 55 22 9.934
pedigree20 437 5 4 50| 24 16 | 10.408 || BN_128 512 2 5 16 | 50 20 9.031
pedigree23 402 5 4 50| 29 15 5.214 BN_129 512 2 5 16| 54 21 9.031
pedigree25 1289 5 5 50| 27 19 | 13.408 || BN_130 512 2 5 16 | 53 21 9.332
pedigree30 1289 5 5 50| 25 18 | 13.107 || BN.131 512 2 5 16 | 53 21 9.332
pedigree33 798 4 5 32| 31 21 | 12.944 || BN-132 512 2 5 16 | 52 21 9.633
pedigree37 1032 5 4 32| 22 13 4.190 || BN_133 512 2 5 16 | 56 21 8.429
pedigree38 724 5 4 50| 18 10 4.408 || BN._134 512 2 5 16 | 55 21 8.730
pedigree39 1272 5 4 50| 25 18 | 13.107 Dynamic Bayesian network
pedigree42 448 5 4 50| 24 16 | 10.408 BN_ZT 2843 91 4 208 7 4 -4.4471
pedigree50 514 6 4 72| 18 10 4567 || BN_23 2425 91 4 208| 5 3| -2.841
pedigree7 1068 4 4 32| 40 23 | 10.536 || BN_-25 1819 91 4 208| 5 2 | -5.159
pedigree9 1118 7 4 50| 31 21 9.480 || BN-27 3025 5 7 3645| 10 2 0.134
pedigreel3 1077 3 4 18| 35 29 | 19.704 || BN_-29 24 10 6 999999| 6 2 6.000
pedigreel9 793 5 5 50| 27 21 | 16.806 Digital circuits
pedigree31 1183 5 5 50| 34 29 | 25.505 c432.1sc 432 2 10 512 28 22 | 51.175
pedigree34 1160 5 4 32| 32 25 | 15.262 || c499.isc 499 2 6 32| 25 25| 30.103
pedigree40 1030 7 5 98| 31 24 | 21.591 || s386.scan 172 2 5 16| 19 8 3.913
pedigree41 1062 5 5 50| 35 25 | 18.010 || s953.scan 440 2 5 16 | 66 38 | 25.889
pedigree44 811 4 5 32| 28 22 | 16.256 adio frequency assignment (WCSP)
pedigree51 1152 5 4 50| 44 33 | 25.311 CELARG-SUBU 16 44 2 1302 8 4 -0.689

astermind puzzle game (WCSP) CELARG6-SUB1-24 14 24 2 301| 10 5| -1.409
mm_03.08.03 1220 2 3 47 21 14 2.107 CELAR6-SUB1 14 44 2 928 | 10 5 -1.597
mm.03.0804 | 2288 2 3 4| 31 20 2.709 || CELAR6-SUB2 16 44 2 928 | 11 6 | -0.273
mm.03.0805 | 3692 2 3 4| 40 25 3.010 || CELAR6-SUB3 18 44 2 928 | 11 6 | -0.273
mm.04.0803 | 1418 2 3 4| 26 17 2.408 || CELAR6-SUB4-20 22 20 2 396 | 12 6 | -0.026
mm.04.0804 | 2616 2 3 4| 38 24 3.010 || CELAR6-SUB4 22 44 2 1548| 12 6 | -0.583
mm.10.0803 | 2606 2 3 4| 56 34 3.612

Table 1. Selected experimental results comparing the tree width apdringe width based bounds.

3 EXPERIMENTAL RESULTS 4 CONCLUSION

We evaluated empirically the tree width and hypertree width bound§ he contribution of this paper is in exploring empirically the prac-
on 112 practical probabilistic networks and 30 constraint networkstical benefit of the hypertree width compared with the tree width in
Problem instances were obtained from various sources; all of therhounding the complexity of algorithms over given problem instances.
are available onlire Statistics collected over 112 Bayesian networks instances and 30

To obtain a tree decomposition of a problem, we perform bucketveighted CSPs provided interesting, yet somewhat sobering infor-
elimination along a minfill ordering (random tie breaking, optimum mation. We confirmed that while the hypertree is always smaller than
over 20 iterations). The tree decomposition is then extended to a hythe tree width, the complexity bound it implies is often inferior to the
pertree decomposition by the method described in [2], where varibound suggested by the tree width. Only when problem instances
ables in a decomposition cluster are greedily covered by functions. possess substantial determinism and when the functions have large

For each problem instance we collected the following statisticsarity, the hypertree can provide bounds that are tighter and therefore
the number of variables, the maximum domain sizk, the max-  more informative than the tree width.

imum function arityr, and the maximum function tightnegsWe The above empirical observation raises doubts regarding the need
also report the best tree width and hypertree width found in the exto obtain good hypertree decompositions beyond the already substan-
periments described above. tial effort into the search of good tree-decompositions, that has been

We define the measu® := log, () . This compares the two 0ngoing for three decades now.
dominant factors of thev bound (1) and théxw bound (2). IfR
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