
Memory-Efficient Tree Size Prediction
for Depth-First Search in Graphical Models

Levi H. S. Lelis1, Lars Otten2, and Rina Dechter3

1 Departamento de Informática, Universidade Federal de Viçosa, Brazil
2 Google Inc., USA

3 Department of Computer Science, University of California, Irvine, USA

Abstract. We address the problem of predicting the size of the search tree ex-
plored by Depth-First Branch and Bound (DFBnB) while solving optimization
problems over graphical models. Building upon methodology introduced by Knuth
and his student Chen, this paper presents a memory-efficient scheme called Re-
tentive Stratified Sampling (RSS). Through empirical evaluation on probabilistic
graphical models from various problem domains we show impressive prediction
power that is far superior to recent competing schemes.

1 Introduction

The most common search scheme for Graphical Models optimization tasks, such as
MAP/MPE or Weighted CSP, is Depth-First Branch-and-Bound (DFBnB). Its use for
finding both exact and approximate solutions was extensively studied in recent years
[1–4]. Our paper addresses the general question of predicting the size of the DFBnB
explored search tree, focusing on graphical models optimization tasks.

DFBnB [5] explores the search space in a depth-first manner while keeping track of
the current best-known solution cost, denoted cbound, which can be initialized with the
value of a solution derived by some preprocessing (e.g., local search). DFBnB uses an
admissible heuristic function h(·), i.e., a function that never overestimates the optimal
cost-to-go for every node, and is guided by an evaluation function f(n) = g(n)+h(n) ,
where g(n) is the cost of the path from the root node to node n. Since f(n) is an
underestimate of the cost of an optimal solution that goes through n, whenever f(n) ≥
cbound, n is pruned.

Often the user of search algorithms such as DFBnB does not know a priori how long
the search will take to finish solving a problem instance: it could take seconds, hours or
years. This is due to a series of factors, including the strength of the heuristic guiding the
search. Prediction is particularly elusive for graphical models where solvers originate
in diverse communities (e.g., CP, UAI, OR) and employ different principles for (a)
traversing the search space, (b) for generating the heuristic lower bound function, and
(c) for pruning nodes. In addition to estimating the algorithm’s running time, estimates
of expanded search tree size could be used to decide which heuristic function to use to
solve a particular problem instance: should one use the slow but accurate heuristic or
the fast but inaccurate one? (e.g., by controlling the i-bound in the case of the mini-
bucket heuristics [1]). Or, in the context of parallelizing search, a prediction scheme

could facilitate load-balancing by partitioning the problem into subproblems of similar
EST sizes [6].

Our approach in this paper builds upon the Stratified Sampling (SS) scheme [7, 8].
Knuth [7] proposed a method for estimating the running time of tree search methods by
quickly estimating the size of the expanded search tree (EST). Under the reasonable
assumption that the time required to expand a node is constant throughout the EST , an
estimate of the EST ’s size provides an estimate of the algorithm’s running time.

Prediction schemes were investigated in the past primarily in the context of path-
finding problems. Specifically, various methods have been developed for estimating
EST size of search algorithms such as IDA* [9]. Examples include Partial Backtrack-
ing by Purdom [10] and SS by Chen [8], both based on the seminal work of Knuth [7];
other related methods include [11–14]. All of the above work by sampling a small
portion of the EST and extrapolating from it. None of those earlier works addressed
graphical models tasks which unlike path-finding problems all their solution nodes ap-
pear are at a fixed finite depth (i.e., the number of variables). Also, none of these earlier
works considered branch and bound search schemes.

Recently Lelis et al. [15] initiated investigating the usage of SS for estimating the
DFBnB EST size and evaluated its effectiveness on graphical models. They observed
that methods such as SS make the implicit stable children assumption, namely that
the set of children of node n in an EST can be determined given only the path from
the root of the EST to n. Crucially, however, this property does not hold in the con-
text of DFBnB where pruning depends on the upper bound cbound that is updated
dynamically throughout the search. Lelis et al. thus introduced a new SS scheme called
Two-Step Stratified Sampling (TSS), described in more detail later, that mitigates this
problem [15]. They also provided an empirical evaluation of their approach by looking
at a specific DFBnB solver applied to a collection of typical graphical models bench-
marks from the probabilistic domain.

Contributions. TSS presented a substantial advance to the DFBnB search space predic-
tion task, but it was also shown to be limited by its memory requirements. As a result,
TSS can produce poor estimates or, in some cases, no estimates at all. In this paper
we introduce Retentive Stratified Sampling (RSS) that addresses differently the stable
children property of DFBnB, resulting in a far more memory-efficient scheme. Namely,
instead of memorizing every node expanded during sampling, RSS retains only the en-
countered solution paths. We show that this scheme is asymptotically unbiased.

We test RSS empirically on optimization benchmarks over probabilistic graphical
models [16] using DFBnB guided by the mini-bucket heuristic [1, 17] (BBMB), which
has been extended into a competition-winning solver [18, 19]. We compare RSS with
TSS and WBE [20], over prediction tasks from 3 problem domains in graphical models.
Our empirical results show that RSS overcomes the memory limitation of TSS and
yields estimates far superior to any of the currently competing methods of its kind.

2 Background

Given a directed and implicitly defined full search tree representing a state-space prob-
lem [21], we are interested in estimating the size of the subtree expanded by a search

algorithm seeking an optimal solution. We call the former the underlying search tree
(UST) and the latter the Expanded Search Tree (EST). Let S(s∗) = (N,E) be a tree
representing such an EST rooted at s∗. For each n ∈ N child(n) = {n′|(n, n′) ∈ E}
defines the node-child relationship in the EST . The prediction task is to estimate the
size of N without fully expanding the EST .

2.1 The Knuth-Chen Method

Knuth [7] presented a method to estimate the size of a tree by repeatedly performing
a random walk from the root. Under the assumption that all branches have a structure
equal to the path visited by the random walk, one branch is enough to estimate the
size of the tree. Knuth observed that his method, while guaranteed to converge to the
right value, is not effective when the tree is unbalanced. Chen [8] proposed Stratified
Sampling (SS), which improves upon Knuth’s method with a stratification of the tree
through a type system to reduce the variance of the sampling process.

Definition 1 (Type System). Let S(s∗) = (N,E) be a tree rooted at s∗, and T a
function from N to a finite set of numerical types {t1, . . . , tn}. We call T a type system,
and it yields a partition of N into T = {t1, . . . , tn} where ti = {s ∈ N |T (s) = ti}.
We abuse notation: ti denotes a type and also the set of nodes in N that map to type ti.

A type system can be based on any property of the nodes in the search tree. For
example, Zahavi et al. [12] used a type system that accounts for the f -value of the
nodes to make predictions of the size of the IDA* EST . That is, nodes n and n′ have
the same type if they have the same f -value. Still in the context of IDA* predictions,
Lelis et al. [22] used variations of Zahavi et al.’s type system in which they also account
for the f -value of the nodes in the neighborhood of n when computing n’s type. In this
paper we use the type system introduced by Lelis et al. [15], which is also based on the
f -value; we describe such type system in Section 4.1 below.

Chen’s Stratified Sampling (SS) is a general method for approximating any function
of the form

ϕ(s∗) =
∑

n∈S(s∗)

z(n) ,

where z is any function assigning a numerical value to a node. ϕ(s∗) represents a
numerical property of the search tree rooted at s∗. For instance, if z(n) = 1 for all
n ∈ S(s∗), then ϕ(s∗) is the size of the tree.

Instead of traversing the entire tree and summing all z-values, SS assumes subtrees
rooted at nodes of the same type will have equal values of ϕ and so only one node
of each type, chosen randomly, is expanded. In practice, a type system is good for a
function ϕ(s∗) if nodes having identical type root subtrees with similar values of ϕ.
Clearly, we wish to have a good type system with a small number of types. If we have a
type for each node, then the type system will be good in the above sense, yet completely
ineffective.

SS estimates ϕ(s∗) as follows. First, it samples the tree rooted at s∗ and returns
a set A of representative-weight pairs, with one such pair for every unique type seen

Algorithm 1 Stratified Sampling, a single probe
Input: tree root s∗, type system T , initial upper bound cbound.
Output: a sampled tree ST specified by a set A which is divided into subsets, where A[i] is the

set of pairs 〈s, w〉 for the nodes s ∈ ST expanded at level i.
1: initialize A[0]← {〈s∗, 1〉}
2: i← 0
3: while i is less then search depth do
4: for each element 〈s, w〉 in A[i] do
5: for each child s′′ of s do
6: if h(s′′) + g(s′′) < cbound then
7: if A[i+ 1] contains an element 〈s′, w′〉 with T (s′) = T (s′′) then
8: w′ ← w′ + w
9: with probability w/w′, replace 〈s′, w′〉 in A[i+ 1] by 〈s′′, w′〉

10: else
11: insert the new element 〈s′′, w〉 into A[i+ 1]
12: i← i+ 1

during sampling. In the pair 〈n,w〉 in A for type t ∈ T , n is the unique node of type t
that was expanded during search and w is an estimate of the number of nodes of type t
in the tree rooted at s∗. ϕ(s∗) is then approximated by ϕ̂(s∗)

ϕ̂(s∗) =
∑

〈n,w〉∈A

w · z(n) , (1)

SS (see Algorithm 1) receives as input a start state s∗, a type system T , and an
initial upper bound cbound which is derived by some preprocessing (e.g., local search).
SS returns a set A which is indexed by depth in the search tree, where A[i] is the set of
representative-weight pairs for the types encountered at depth i.

In SS types are required to be partially ordered: a node’s type must be strictly greater
than the type of its parent. Chen suggests that this can be guaranteed by adding the
depth of a node to the type system and then sorting the types lexicographically. In our
implementation of SS, types at one level are treated separately from types at another
level by the division of A into the A[i]. If the same type occurs on different levels the
occurrences will be treated as though they were different types – the depth of search is
implicitly added to the type system.

The algorithm works as follows: A[0] is initialized to contain only the root of the
tree to be probed, with weight 1 (line 1). In each iteration (lines 4 through 11), all nodes
in A[i] are expanded. The children of each node in A[i] are considered for inclusion in
A[i + 1]. If a child s′′ has a type t that is already represented in A[i + 1] by node s′

with weight w′, then a merge of s′′ and s′ is performed: increase weight w′ of s′ by
the weight w of s′′’s parent s (since there were w nodes at level i that are assumed to
have children of type t at level i+1). With a certain probability (line 9) s′′ will replace
the s′. Chen [8] proved that this stochastic choice of type representatives reduces the
variance of the estimation. Once all the states inA[i] are expanded, we move to the next
iteration. In Chen’s SS, this process continues until A[i] is empty. The set of nodes in
A represents a subtree of the tree SS samples, we call this subtree the sampled tree.

A single run of SS is called a probe. We denote as ϕ̂(p)(s∗) the estimate produced
by SS’s p-th probe.

Theorem 1. [8] Given a set of independent probes p1, · · · , pm produced by SS using
type system T from tree S(s∗), the average 1

m

∑m
j=1 ϕ̂

(pj)(s∗) converges to ϕ(s∗) as
m goes to infinity. Namely,

limm→∞
1

m

m∑
j=1

ϕ̂(pj)(s∗) = ϕ(s∗)

2.2 Two-Step Stratified Sampling (TSS)

Stable Children Property. Lelis et al. [15] observed the implicit assumption in SS that
it has access to the generative process of the node-child relationship for every node. In
particular, SS prunes child nodes only if their f -value is greater than or equal to the
initial upper bound cbound (line 6 in Algorithm 1). While such pruning scheme holds
for predicting EST size of algorithms such as IDA* [22], it does not hold in the case of
DFBnB, where pruning is based on an upper bound that is updated throughout search.
As a result, the exact child nodes generated by DFBnB are not available to the sampling
algorithm.

Definition 2 (Stable Children Property). [15] Given an EST S(s∗) = (N,E), the
stable children property is satisfied iff for every path π leading from the root s∗ to a
node n, the set child(n) in EST can be determined based on π alone.

Lelis et al. [15] overcome the lack of the stable children property in the EST of
DFBnB by producing the estimate in two steps. In the first step, their TSS algorithm
generates m independent SS probes assuming that the search tree is bounded by the
initial upper bound cbound. Each SS probe produces a sampled tree, and TSS stores
in memory the union of all m sampled trees, denoted UnionST . In the second step,
TSS emulates DFBnB restricted to the nodes in UnionST . UnionST gets larger as
we increase the value of m. In particular, as m goes to infinity, UnionST converges
to the search tree bounded by cbound. In this theoretical scenario, TSS’s second step
expands exactly the same nodes that DFBnB expands and TSS is able to determine the
set child(n) exactly and thus produces perfect estimates.

Although in theory the TSS scheme overcomes the lack of the stable child property,
it can have high memory requirement, as it stores every node expanded in the first step
of each of them probes. Therefore, TSS is often limited to only a few probes, frequently
producing poor predictions or no predictions at all.

Theorem 2 (TSS’s Time and Memory Complexity). [15] The memory complexity of
TSS is O(m × |T |2), where |T | is the size of the type system being employed and m
is the number of TSS probes. TSS time complexity is O(m× |T |2 × b), where b is the
branching factor of UnionST .

2.3 Graphical models

A graphical model is given as a set of variables X = {X1, . . . , Xn}, their respective
finite domains D = {D1, . . . , Dn}, a set of functions F = {f1, . . . , fm}, each de-
fined over a subset of X (the function’s scope), and a combination operator (typically
sum, product, or join) over functions. Together with a marginalization operator such as
minX and maxX we obtain a reasoning problem. For instance, a weighted constraint
satisfaction problem is typically expressed through a set of cost functions over the vari-
ables, with the goal of finding the minimum of the sum over these costs (i.e., we seek
argminX

∑
i fi) . In the area of probabilistic reasoning, the most probable explanation

task over a Bayesian network is defined as maximizing the product of the probabilities
(argminX

∏
i fi). The set of function scopes imply a primal graph, an induced width

or tree width that is known to control the complexity of variable-elimination and search
algorithms for solving a variety of graphical models tasks [23].

The search tree of a graphical model. The most successful schemes for solving opti-
mization tasks over graphical models is by DFBnB search. In its simplest formulation
the nodes in UST are consistent partial assignment of values to the variables along a
fixed variable ordering X1, · · · , Xn. The root is the empty assignment, and a node at
depth d is n = (x1, · · · , xd) where xi is a value from the domain of Xi. Child nodes
of n extend it by assigning values to the next variable in the ordering. Solutions cor-
respond to full assignments and all appear at depth n. Leaves of the UST correspond
either to partial assignments that cannot be extended consistency or to full assignments
representing solutions. DFBnB prunes the search tree in the usual manner, comparing
its heuristic evaluation function to the current upper-bound.

A popular heuristic function that guides search schemes for graphical models is the
mini-bucket heuristic. It is based on mini-bucket elimination, an approximate variant of
variable elimination that computes approximations to reasoning problems over graph-
ical models [1]. A control parameter, denoted as i-bound, allows a trade-off between
accuracy of the heuristic and its computational requirements: higher values of i yield a
more accurate heuristic but take more time and space to compute.

3 Retentive Stratified Sampling

In this section we present Retentive Stratified Sampling (RSS). The central idea is that
it is sufficient to have available the full set of solutions subsumed in the DFBnB EST
in order to allow SS to determine exactly the set child(n) in the EST .

DFBnB defines a complete ordering on the nodes in the EST , implied by the order
in which the child nodes of each parent node are expanded. This expansion ordering
also induces an order on the solution leaf nodes.

Definition 3 (Solution Search Tree). Given that the DFBnBEST is an ordered search
tree, the subtree of EST that is restricted to only solution paths is called Solution
Search Tree (SST). The leaves in the SST are ordered, from left to right, reflecting
their discovery order by DFBnB. For each node, its child nodes are ordered from left to
right as well. If we have k solutions we assume they are ordered by s1, · · · , sk .

Fig. 1. Example of a UST . The dashed nodes and arcs do not belong to theEST ; the arcs in bold
represent the SST , with solution nodes m and q, with solution costs of 15 and 10 respectively.
The numbers by the nodes a in the SST show the lowest cost solution l(a) going through a.

The assumption that DFBnB has a deterministic ordering of child-node expansion
is common since DFBnB usually expands first the subtree rooted at the most promising
child (i.e., the child with lowest f -value). By definition the leaves of SST are ordered
in decreasing cost from left to right.

Lemma 1. If the ordered Solution Search Tree SST is available to SS, then for every
node n in the DFBnB EST , SS can determine the set child(n) in the EST .

Proof (sketch). We prove the theorem constructively, by providing an algorithm (see
Algorithm 3) for the task. Given an SST , we will associate each node m in SST with
the lowest cost solution in SST that goes through m, denoted l(m). This is easy to
compute by a depth-first search traversal on the SST in time linear in |SST |. It is also
easy to update the l(·)-values whenever new solutions are added to SST : after a new
solution is added to the SST , its cost is propagated upwards, namely the minimal costs
l(m) for all m along the solution path are updated in the obvious way.

Given a partial path π = n0, n1, . . . , nd inUST , from the root n0 to a node n = nd,
we wish to determine the correct upper bound that would be used by DFBnB. This is
done as follows: let node nj be the closest ancestor of n = nd on the path π going
in reverse order from nd backwards towards n0 that (1) appears in SST , and (2) has
a child node m in SST which is not on π, such that m immediately precedes nj+1

(which is the child node of nj’s on π) according to the child-node ordering. Clearly m
can be identified in time linear on the depth of SST . It is easy to see that if m exists,
then the lowest cost solution encountered by DFBnB prior to n is l(m), which is thus
the upper bound available to DFBnB when it visits n.

Example 1. The tree shown in Figure 1 represents a hypotheticalUST where the dashed
nodes are pruned by DFBnB, and the arcs in bold represent the SST . We are assuming
that DFBnB visits the nodes in lexicographical order. If RSS encounters node n during
sampling, it identifies l(k) = 15 as the relevant upper bound as follows. RSS identifies
j as the first ancestor of n along the path π going from n towards the root that appears

Algorithm 2 Retentive Stratified Sampling, a single probe
Input: tree root s∗, type system T , solution branches B, initial upper bound cbound.
Output: a sampled tree ST represented by an array of sets A, where A[i] is the set of pairs
〈s, w〉 for the nodes s ∈ ST expanded at level i, and solutions B to be reused in next probe.

1: initialize A[0]← {〈s∗, 1〉}
2: i← 0
3: while i is less then search depth do
4: for each element 〈s, w〉 in A[i] do
5: if s is a solution node ending a solution path πs and πs is not in B then
6: B ← Insert(B, πS)
7: for each child s′′ of s do
8: currb ← V erifyBound(s′′, B, cbound) // cf. Algorithm 3
9: if h(s′′) + g(s′′) < currb then

10: if A[i+ 1] contains an element 〈s′, w′〉 with T (s′) = T (s′′) then
11: w′ ← w′ + w
12: with probability w/w′, replace 〈s′, w′〉 in A[i+ 1] by 〈s′′, w′〉
13: else
14: insert new element 〈s′′, w〉 in A[i+ 1]
15: i← i+ 1

Algorithm 3 VerifyBound
Input: node s ∈ UST along path π, ordered tree-structure B whose arcs are labeled l(n,m)

denoting the lowest solution cost below m, and initial upper bound cbound.
Output: upper bound for s according to B
1: (n′,m′)← identify n′ ∈ B as the closest ancestor to s along π that has a child node m′ on
B which immediately precedes m”, which is n′’s child on π.

2: If n′ exists, then return l(m′), return cbound otherwise.

in SST , and has a child node k in SST which is not on π, which immediately pre-
cedes j’s child node on π (which in this case is n itself) according to the child-node
ordering. If f(n) = 16 (which is greater than l(k)), then RSS correctly prunes n. As
another example, if RSS encounters node p during sampling, it identifies l(j) = 15 as
the relevant upper bound as follows. i is the first ancestor of p along the path π going
from p towards the root that appears in SST , and has a child node j in SST which is
not on π, and which immediately precedes i’s child node on π (node o) according to the
child-node ordering. In this case, if f(p) = 10, then RSS correctly expands p.

Since the SST is generally far smaller than theEST , we are likely to get a memory-
efficient algorithm, which is obviously superior to TSS. Algorithm RSS implements the
scheme described in Lemma 1 in its pseudo code shown in Algorithms 2 and 3. RSS
can be viewed as SS with the following two extensions:

1. Algorithm 2 approximates SST in the initially empty tree structure B, which is
updated throughout probes. Specifically, whenever a solution sol is generated, it is
inserted into B (respecting the parent-child ordering induced by DFBnB). In doing
so, pruning within the B structure can be applied by removing from B any solution
that succeeds sol in B and has a higher cost (note that solutions preceding sol in

B will always have higher cost due to the pruning in Algorithm 2, line 9). Thus, at
all times we maintain in B an ordered tree where leaves have decreasing cost going
from the first to the last solution expanded by DFBnB. The function Insert(B, πS)
(line 6 of Algorithm 2) accomplishes this task and can work in time linear in |B|
(the function is not formally introduced). The tree B that RSS outputs in the i-th
probe is used as input for the (i+ 1)-th probe.

2. RSS does not insert child s′′ into A[i + 1] if there is a solution in B that appears
before s′′, and h(s′′) + g(s′′) ≥ currb (lines 8 and 9 of Algorithm 2).

3.1 Asymptotically Perfect Predictions

Since every branch in the EST has a non-zero probability of being sampled, it is quite
immediate that:

Lemma 2. The tree structure B converges to SST as the number of probes goes to
infinity.

From Lemma 2 and from Theorem 1 it follows that RSS has the asymptotic guar-
antee to generate perfect predictions of the size of the DFBnB EST . Formally,

Theorem 3. Given a set of independent probes p1, · · · , pm produced by RSS using
type system T from a search tree S(s∗) representing a DFBnB EST , there exists j0 ≤
m such that, the average 1

m−j0
∑m

j≥j0 ϕ̂
(pj)(S) converges to ϕ(s∗) as m→∞.

Proof. Eventually, after a finite number of probes j0,B will be equal (or close) to SST
(Lemma 2), allowing RSS to determine the exact set child(n) for any node n in the
DFBnB EST (Lemma 1), which in turn allows us to apply Theorem 1.

In practice j0 is unknown and we use a heuristic estimate as described below.

3.2 Time and Space Complexity of Retentive Stratified Sampling

In each probe, in addition to the B structure, RSS with type system T stores in memory
at most |T | nodes. Across multiple probes B converges to SST . Thus,

Theorem 4. RSS’s time complexity after m probes is O(m × |T | × d), where |T | is
the size of the type system and d is the EST depth (i.e., the number of variables in the
graphical model). The space complexity is O(|T |+ |SST |).

Although RSS’s time and space complexities depend on parameters for which we
might not know the values in advance, they allow us to contrast, for example, RSS and
TSS memory requirements. In particular, we observe that the amount of memory TSS
requires is bounded by |EST |, while the amount of memory RSS requires is bounded
by |SST |. In the worst case |SST | is bounded by the number of solutions of the original
problem, in the best case SST is a single branch. In practice |SST | tends to be much
smaller than the |EST |.

4 Experiments

4.1 Empirical Methodology

We evaluate RSS by predicting EST sizes of DFBnB using the mini-bucket heuris-
tic (BBMB) [1, 17]. For a given problem instance we experiment with different mini-
bucket i-bounds for producing different heuristic strengths. RSS is currently not able to
account for AND/OR search spaces and caching, techniques used in the more advanced
solvers such as AOBB [18, 19].

We consider three problem domains, protein side-chain prediction (pdb), computing
haplotypes in genetic analysis (pedigree), and randomly generated grid networks, with
14, 4, and 14 problem instances, respectively. We use the following i-bounds values: 3
for pdb; 6, 7, 8, 10, 11, 12, and 13 for pedigree; and 10, 11, 12, and 13 for grids. Thus,
we use 14, 28, and 56 prediction tasks (pairs problem instance and i-bound) for pdb,
pedigree, and grids, respectively. We remove from our test set the tasks that DFBnB is
able to solve in less than a second, and the tasks that DFBnB is not able to solve after
several days of running time. After removing such tasks our test set contains 14, 26,
and 54 prediction tasks for pdb, pedigree, and grids, respectively. We remove the easy
instances from our test set because they are uninteresting and the instances that DFBnB
is not able to solve after several days of running time because we are not able to verify
the algorithms’ prediction accuracy on those instances. The average running time of
DFBnB on the tasks of each domain is 89.3 minutes, 72.2 hours, and 10.9 minutes, for
pdb, pedigree and grids, respectively, on a 2.6 GHz CPU (10GB RAM).

We compare the performance of RSS against TSS and WBE (described below). We
leave SS out of our experiments because Lelis et al. [15] have already shown that SS
is not able to produce good predictions of DFBnB EST size even when granted more
computation time than the time required by DFBnB to solve the problem. Since TSS
and RSS are stochastic algorithms, we consider the average result over five independent
runs for each prediction task. In each case we use the following ratio as a measure of
accuracy: predicted

actual if predicted > actual and actual
predicted , otherwise — this prevents

over- and underestimations canceling out when averaging results. Perfect predictions
yield a ratio of 1.0.

Weighted Backtrack Estimator The Weighted Backtrack Estimator (WBE) [20] runs
alongside DFBnB search with minimal computational overhead. It uses explored branches
to predict unvisited ones and thereby the EST size. WBE produces perfect predictions
when the search finishes. We implemented WBE in the context of BBMB, yielding an
updated prediction every 5 seconds. Kilby et al. presented another prediction algorithm,
the Recursive Estimator (RE), whose performance was similar to WBE’s in their exper-
iments. Both WBE and RE were developed to predict the size of binary trees, but in
contrast to WBE it is not clear how to generalize RE to non-binary search trees.

Type Systems The use of the f -value to define a node’s type has proven effective in
other heuristic search tree size estimation problems [22]. In our experiments, in addition
to a node’s f -value, we also use its depth level (cf. Algorithm 2) for its type, namely

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pedigree1, i-bound 7, DFBnB Runtime 624s.

WBE
TSS
RSS

1 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10

 0 200 400 600 800 1000 1200

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pedigree39, i-bound 13, DFBnB Runtime 1297s.

WBE
TSS
RSS

1

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pedigree23, i-bound 9, DFBnB Runtime 48s.

WBE
TSS
RSS

1 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10

 0 100000 200000 300000 400000 500000
R

at
io

 P
re

di
ct

io
n

/ N
od

es
 E

xp
an

de
d

Runtime in Seconds

pedigree39, i-bound 10, DFBnB Runtime 517209s.

WBE
TSS
RSS

1

Fig. 2. Prediction accuracy over time of RSS, TSS, and WBE on select representative prediction
tasks of the pedigree domain.

nodes n and n′ have the same type if they are at the same level of the UST and if
f(n) = f(n′) . We note that the cost function and accordingly, the derived heuristic
in graphical model problems are often real-valued and a type system based on floating
point equality might be far too large. To mitigate this we apply the technique used by
Lelis et al. [15], multiplying f(n) by a constant C and truncating to the integer portion.
The constant C allows us to control to some extent the size of the type system. That is,
larger values of C result in larger type systems, which implies in slower but possibly
more accurate predictions. This is because larger range of types yields a larger coverage
of the search space.

Warmstarting RSS Theorem 3 showed that RSS is unbiased in the limit, in particular
because RSS is eventually able to determine exactly the sets child(n) in the EST (i.e.,
B = SST) and the number of probes based on this will eventually outweigh the earlier
ones. From Theorem 3 we know that the initial set of probes are skewed and should not
be included in the estimate. The rule we used is that upon termination of the probes,
we compute the RSS estimation by only averaging over probes obtained since the last
addition of a new solution to B.

4.2 Select Individual Results

We begin by showing results of RSS, TSS, and WBE on select individual prediction
tasks in Figures 2, 3, and 4. These instances are representative in that they highlight
different aspects of the prediction methods. For each scheme, we plot in log-scale the

 1e-05
 1

 100000
 1e+10
 1e+15
 1e+20
 1e+25
 1e+30
 1e+35
 1e+40

 0 100 200 300 400 500 600 700 800

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pdb1opc, i-bound 3, DFBnB Runtime 827s.

WBE
TSS
RSS

1 0.01
 1

 100
 10000
 1e+06
 1e+08
 1e+10
 1e+12
 1e+14
 1e+16
 1e+18
 1e+20

 0 100 200 300 400 500 600 700 800 900

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pdb1c44, i-bound 3, DFBnB Runtime 981s.

WBE
TSS
RSS

1

 1e-05
 1

 100000
 1e+10
 1e+15
 1e+20
 1e+25
 1e+30
 1e+35
 1e+40
 1e+45

 0 1000 2000 3000 4000 5000 6000 7000

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pdb1qrp, i-bound 3, DFBnB Runtime 7667s.

WBE
RSS

1

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 0 1000 2000 3000 4000 5000

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pdb1f4p, i-bound 3, DFBnB Runtime 5659s.

WBE
TSS
RSS

1

Fig. 3. Prediction accuracy over time of RSS, TSS, and WBE on select representative prediction
tasks of the pdb domain.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

75-16-5, i-bound 10, DFBnB Runtime 3387s.

WBE
TSS
RSS

1 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

50-14-5, i-bound 11, DFBnB Runtime 165s.

WBE
TSS
RSS

1

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

75-16-6, i-bound 10, DFBnB Runtime 557s.

WBE
TSS
RSS

1 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

75-16-5, i-bound 12, DFBnB Runtime 66s.

WBE
TSS
RSS

1

Fig. 4. Prediction accuracy over time of RSS, TSS, and WBE on select representative prediction
tasks of the grids domain.

ratio of predicted and actual EST size, as defined above, as a function of running time
in seconds. We run RSS with different number of probes and use the warmstarting
strategy to generate predictions with different running time. Results for RSS and TSS
are averaged over 5 independent runs. There is very little variance in the prediction
accuracy over different runs of RSS as the 95% confidence interval is shown but is
hardly noticeable. Note that because we vary the number of probes, RSS is oblivious
to the DFBnB total running time. That is why in some plots we do not present the RSS
results for larger DFBnB running times. The DFBnB total running time is shown on the
top of each plot. For each problem we first run a limited-discrepancy search [24] with
a maximum discrepancy of 1 to quickly find an initial bound cbound which is provided
to both DFBnB and to the prediction algorithms. We use C = 100 in this experiment
for both RSS and TSS (see Section 4.1 on type systems).

The prediction results in Figures 2, 3, and 4 suggest that RSS is far superior to both
TSS and WBE. For instance, RSS quickly produces almost perfect estimates of EST
size of pedigree39 with i = 10 (Figure 2); TSS is unable to yield good estimates and
quickly runs out of memory. WBE is able to produce acceptable predictions only towards
the end of DFBnB execution—approximately 6 days on this instance. For pdb1qrp with
i = 3 (Figure 3) TSS is unable to produce predictions at all—RSS, however, quickly
produces near-perfect estimates. Similarly, RSS outperforms the other methods on al-
most all instances. The pdb1c44 problem instance with i-bound of 3 (Figure 3) shows
another situation we would like to highlight. In that instance RSS starts producing es-
timates after 200 seconds of computation time. This is because in the first 200 seconds
RSS is constantly updating B and according to our warmstarting strategy described
above RSS does not produce estimates while updating B. 75-16-6 with i = 10 (Fig-
ure 4) is one of the rare cases in which WBE performs better than both RSS and TSS.

4.3 Comparison with TSS

Table 1 shows a summary of prediction results of TSS and RSS for C = 10 and C =
100. Here “%” is the average prediction time relative to DFBnB. For instance, a value of
20 means that the prediction was produced in 20% of the DFBnB running time. Given
a number of probes for TSS and the resulting %-value, the number of RSS probes
is chosen so that it has %-values smaller than TSS, thereby giving the latter a small
advantage. In each case we observe that n, the number of instances where TSS does not
run out of memory, decreases with the number of probes m. For instance, for pedigrees
with C = 100 and m = 50 probes, TSS is able to produce predictions only for 8 out
of 26 prediction tasks (the comparison is performed only on these 8 instances). We also
observe in Table 1 the trade-off between prediction accuracy and running time provided
by parameter C. RSS using C = 100, and thus a larger type system, produces more
accurate predictions, but it requires more time to produce such predictions.

Table 1 suggests that RSS produces substantially more accurate predictions than
TSS, in less time. In many cases, its average ratio of predicted and actual EST size
is orders of magnitude better than TSS. For instance, for grids with C = 10 the ratios
with m = 10 probes for TSS and RSS are over 300,000 and 15.1, respectively, which
drops to 416 and 2.17 with m = 50. Overall, its accuracy results in Table 1 and its

pedigree (C = 10) pedigree (C = 100)
TSS RSS TSS RSS

m n ratio % ratio % m n ratio % ratio %
1 21 7.45e+06 8.47 3.5 7.04 1 15 4.2e+06 2.38 181 1.54

10 18 3.92e+06 5.67 3.2 6.83 10 12 1.07e+03 22.3 1.6 21.4
50 15 4.37e+06 10.4 2.21 6.62 50 8 58.8 23.6 1.71 21.5

100 13 6.46e+04 18.9 2.3 16.7 100 8 72.4 42.3 1.7 42
pdb (C = 10) pdb (C = 100)

TSS RSS TSS RSS
m n ratio % ratio % m n ratio % ratio %

1 14 1.73e+04 0.383 9.83 2.14 1 13 66.4 3.07 6.66 2.7
10 14 4.34e+03 1.87 9.83 2.14 10 10 12.1 13.5 1.2 12.3
50 13 174 4.96 9.44 2.05 50 2 1.1 12.2 1.02 7.47

100 11 3.88 8.55 1.37 7.35 100 0 - - - -

grids (C = 10) grids (C = 100)
TSS RSS TSS RSS

m n ratio % ratio % m n ratio % ratio %
1 53 2.61e+06 1.61 1.54e+04 1.47 1 50 373 20.4 4.18 17.5

10 53 3.02e+05 7.89 15.1 7.49 10 40 3.47 41.2 2.61 37.3
50 50 416 17.3 2.17 16.8 50 20 1.94 61.1 1.4 57.3

100 48 134 23 1.87 21.8 100 12 2.22 69.6 1.24 67.3
Table 1. Prediction results of RSS and TSS for C = 10 and C = 100. For each number of TSS
probes m, n is the number of tasks that TSS is able to produce predictions for without running
out of memory and which the algorithms are compared on. Ratio of predicted and actual EST
size is computed as above, “%” is the average percentage of the full DFBnB search time. Bold
results indicate that a scheme produced more accurate predictions in shorter time.

more modest memory requirement suggest that RSS decisively outperforms and thus
supersedes TSS.

4.4 Comparison with WBE

Lastly, we compare the performance of RSS and WBE. Evaluation can occur on the
entire set of prediction tasks, since neither of the two schemes had issues running out
of memory. The results in Table 2 are again averaged per problem domain, but this time
organized by choosing predictions with similar %-value (see table caption for details).
Note that the %-values for WBE are by design larger than the ones for RSS, thus giving
WBE a slight advantage in terms of computation time.

In this prediction setting, RSS performs substantially better than WBE, in all cases
being several orders of magnitude more accurate than WBEwhile taking the same or less
amount of time. Most significantly, in case of pdb tasks RSS average ratio in Table 2
never exceeds 2, while WBE overestimatesEST size by 18 or more orders of magnitude.
Secondly, RSS is able to provide estimations within a factor of 2 (on average) after only
10-15% of DFBnB search time. To the best of our knowledge, this is the first time a
sampling algorithm is able to produce such accurate predictions of DFBnB EST size
without having memory issues.

pedigree (26 tasks) pdb (14 tasks) grids (54 tasks)
WBE RSS WBE RSS WBE RSS

% range ratio % ratio % ratio % ratio % ratio % ratio %
0 - 5 6.92e+06 1.61 20 1.44 1.7e+25 3.16 1.78 3.14 8.09e+07 3.48 142 3.27

5 - 10 6.34e+03 8.82 12 7.16 2e+26 7.4 1.97 7.36 2.95e+05 7.65 85.1 7.25
10 - 15 7.65e+03 15.2 2.45 12.4 5.74e+25 12.3 1.86 12.2 2.08e+05 12.6 1.68 11.9
15 - 20 545 19 1.06 18 3.11e+19 17.1 1.72 17.1 1.17e+07 19.5 5.55 17
20 - 25 111 43.1 1.41 22.4 6.91e+18 22.8 1.46 22.7 450 25.4 1.83 22.3

Table 2. Prediction results of WBE and RSS (C = 100), averaged per problem domain and
arranged by %-value: for RSS we average the results obtained within 0-5%, 5-10%, ..., 20-25%
of DFBnB runtime. In each case we then pick the next-highest (in terms of %) WBE result to
compare. Bold results indicate that a scheme produced more accurate predictions in shorter time.

5 Related and Future Work

Another approach for DFBnB EST size prediction lies in off-line learning of regres-
sion models based on features extracted from the problem instance, the search space,
and possibly candidate solvers. These techniques have been applied to satisfiability
problems [25], combinatorial auctions [26], and graphical models [6]. These methods
generally require collecting a large set of solved training instances, which can take a
substantial amount of time. By contrast, RSS does not rely on training data; its output,
however, could be used as an input feature for a regression-based approach, an interest-
ing direction we hope to investigate in the future.

RSS has two limitations we hope to address in the future. First, RSS is not able
to produce estimates of the size of AND/OR search trees [18]. Second, our sampling
scheme does not account for DFBnB implementations that use caching to avoid ex-
panding duplicated nodes.

6 Conclusion

We have introduced Retentive Stratified Sampling (RSS), a scheme for estimating the
size of DFBnB search trees. RSS repeatedly probes the search tree and remembers solu-
tion nodes it encounters in the process, which are used to apply pruning in subsequent
probes. We have demonstrated the superiority of RSS over competing schemes like
TSS and WBE, namely its ability to produce estimates with high accuracy in relatively
little time. In addition, unlike other schemes RSS does not suffer from memory issues,
further adding to its attractiveness.

Acknowledgements

This work was sponsored by FAPEMIG, in part by NSF grants IIS-1065618 and IIS-
1254071, and in part by the United States Air Force under Contract No. FA8750-14-C-
0011 under the DARPA PPAML program.

References

1. Kask, K., Dechter, R.: A general scheme for automatic search heuristics from specification
dependencies. Artificial Intelligence (2001) 91–131

2. Marinescu, R., Dechter, R.: Memory intensive AND/OR search for combinatorial optimiza-
tion in graphical models. Artificial Intelligence 173 (2009) 1492–1524

3. Otten, L., Dechter, R.: Anytime AND/OR depth first search for combinatorial optimization.
In: Proceedings of the Symposium on Combinatorial Search, AAAI Press (2011) 117–124

4. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local consis-
tency in Weighted CSP. In: Proceedings of the AAAI Conference on Artificial Intelligence,
AAAI Press (2006) 22–27

5. Balas, E., Toth, P.: Branch and bound methods. In Lawler, E.L., Lenstra, J.K., Kart,
A.H.G.R., Shmoys, D.B., eds.: The Traveling Salesman Problem: A Guided Tour of Combi-
natorial Optimization. John Wiley & Sons, New York (1985)

6. Otten, L., Dechter, R.: A case study in complexity estimation: Towards parallel branch-and-
bound over graphical models. In: Proceedings of the Conference on Uncertainty in Artificial
Intelligence. (2012) 665–674

7. Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comp. 29 (1975)
121–136

8. Chen, P.C.: Heuristic sampling: A method for predicting the performance of tree searching
programs. SIAM Journal on Computing 21 (1992) 295–315

9. Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence 27 (1985) 97–109

10. Purdom, P.W.: Tree size by partial backtracking. SIAM Journal of Computing 7 (1978)
481–491

11. Korf, R.E., Reid, M., Edelkamp, S.: Time complexity of Iterative-Deepening-A∗. Artificial
Intelligence 129 (2001) 199–218

12. Zahavi, U., Felner, A., Burch, N., Holte, R.C.: Predicting the performance of IDA* using
conditional distributions. Journal of Artificial Intelligence Research 37 (2010) 41–83

13. Burns, E., Ruml, W.: Iterative-deepening search with on-line tree size prediction. In: Pro-
ceedings of the International Conference on Learning and Intelligent Optimization. (2012)
1–15

14. Lelis, L.H.S.: Active stratified sampling with clustering-based type systems for predicting the
search tree size of problems with real-valued heuristics. In: Proceedings of the Symposium
on Combinatorial Search, AAAI Press (2013) 123–131

15. Lelis, L.H.S., Otten, L., Dechter, R.: Predicting the size of depth-first branch and bound
search trees. In: International Joint Conference on Artificial Intelligence. (2013) 594–600

16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)
17. Dechter, R., Rish, I.: Mini-buckets: a general scheme for bounded inference. Journal of the

ACM 50 (2003) 107–153
18. Marinescu, R., Dechter, R.: AND/OR Branch-and-Bound search for combinatorial optimiza-

tion in graphical models. Artificial Intelligence 173 (2009) 1457–1491
19. Otten, L., Dechter, R.: Anytime AND/OR depth-first search for combinatorial optimization.

AI Communications 25 (2012) 211–227
20. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Estimating search tree size. In: Proceedings

of the AAAI Conference on Artificial Intelligence, AAAI Press (2006) 1014–1019
21. Nilsson, N.: Principles of Artificial Intelligence. Morgan Kaufmann (1980)
22. Lelis, L.H.S., Zilles, S., Holte, R.C.: Predicting the Size of IDA*’s Search Tree. Artificial

Intelligence (2013) 53–76

23. Dechter, R.: Reasoning with Probabilistic and Deterministic Graphical Models: Exact Al-
gorithms. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers (2013)

24. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence. (1995) 607–613

25. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm
Selection for SAT. J. Artif. Intell. Res. (JAIR) 32 (2008) 565–606

26. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology
and a case study on combinatorial auctions. Journal of the ACM 56 (2009) 1–52

