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Abstract. One popular and efficient scheme for solving combinatorial optimiza-
tion problems over graphical models exactly is depth-first Branch and Bound.
However, when the algorithm exploits problem decomposition using AND/OR
search spaces, its anytime behavior breaks down. This article 1) analyzes and
demonstrates this inherent conflict between effective exploitation of problem de-
composition (through AND/OR search spaces) and the anytime behavior of depth-
first search (DFS), 2) presents a new search scheme to address this issue while
maintaining desirable DFS memory properties, and 3) analyzes and demonstrates
its effectiveness through comprehensive empirical evaluation. Our work is appli-
cable to any problem that can be cast as search over an AND/OR search space.

1 Introduction

Max-product problems over graphical models, generally known as MPE (most probable
explanation) or MAP (maximum a posteriori) inference, have many applications with
practical significance, ranging from computational biology and genetics to scheduling
tasks and coding networks. One established and efficient class of algorithms for solving
these problems exactly is depth-first Branch and Bound over AND/OR search spaces.
Developed in the past decade within the probabilistic reasoning and constraint commu-
nities, these methods are effective because they use sophisticated lower bound schemes
such as soft arc-consistency [2] or the mini-bucket heuristic [3, 4], because they avoid
redundant computation using caching schemes, and most significantly, because they
take advantage of problem decomposition by exploring an AND/OR search space [5]
or an equivalent representation. The efficiency of these algorithms was established in
several evaluations, including recent UAI competitions [6], and their properties when
used for exact computation are well documented [7, 4, 8].

A principled alternative is presented by best-first schemes, but while provably supe-
rior in terms of number of node expansions, these often fail when a problem has large
induced width due to the generally exponential size of the algorithm’s OPEN list; more-
over, they can only provide a solution at termination [8]. Depth-first search is therefore
often preferred because of its flexibility in working with bounded memory – the OPEN
list of nodes grows linearly – and because of its anytime behavior. Namely, when find-
ing a feasible solution is easy but an optimal one is hard, depth-first Branch and Bound
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generates solutions that get better and better over time, until it eventually discovers
an optimal one. Thus it can function also as an approximation scheme for otherwise
infeasible problems or when time is limited [9].

Indeed, in the 2010 UAI Approximate Inference Challenge participating Branch and
Bound solvers performed competitively with respect to approximation (placing 1st and
3rd in some categories). But we also observed an inability to produce even a single solu-
tion on some instances, especially when the time bound was small. Thus motivated, this
article demonstrates that the issue is rooted in the underlying AND/OR search space.

These search spaces were originally introduced to graphical models to facilitate
problem decomposition during search (e.g. [10]) and can be explored by any search
strategy. When traversed depth-first, however, all but one decomposed subproblem will
be fully solved before a single overall solution can be composed, voiding the algorithm’s
anytime characteristics.

This article’s main contribution is a new Branch and Bound scheme over AND/
OR search spaces, called Breadth-Rotating AND/OR Branch and Bound (BRAOBB)
that addresses the anytime issue in a principled way, while maintaining the favorable
complexity guarantees of depth-first search. The algorithm combines depth-first and
breadth-first exploration by periodically rotating over the different subproblems, each
of which is processed depth-first.

Experimental evaluation is conducted on a variety of benchmark domains, includ-
ing haplotype computation problems in genetic pedigrees, random grid networks, and
protein side-chain prediction instances. We compare BRAOBB against one of the best
variants of AND/OR branch and Bound search, AOBB [4], and against an “ad hoc” fix
that we suggest – the latter algorithm relies on a heuristic to quickly find a solution to
each subproblem before reverting to depth-first search. We furthermore compare against
a state-of-the-art stochastic local search solver, which is specifically targeted at anytime
performance but cannot provide any proof of optimality [11].

The empirical results demonstrate superior anytime behavior of BRAOBB, espe-
cially over problematic cases where standard AOBB and its ad hoc fix fail, including
several very hard instances from the 2010 UAI Approximate Inference Challenge that
were made available and three weighted constraint satisfaction problem instances that
are known to be very complex. We also show how combining local search and exhaus-
tive AND/OR search lets us enjoy the benefits of both approaches. Notably, a solver
based on this concept recently won all three categories (20 seconds, 20 minutes, and 1
hour) in the MPE track of the PASCAL 2011 Inference Challenge [12, 13], the succes-
sor to the 2010 UAI Challenge.

2 Brief Overview of Results

As noted above, in AND/OR search spaces depth-first traversal of a set of independent
subproblems will solve to completion all but one subproblem before the last one is even
considered. As a consequence, the first generated overall non-optimal solution contains
conditionally optimal solutions to all subproblems but the last one. Furthermore, de-
pending on the problem structure and the complexity of the independent subproblems,
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Fig. 1. Anytime performance of AOBB for differing subproblem oderings. Specified for each
network: number of variables n , max. domain size k , induced width w along the chosen ordering,
height of the corresponding pseudo tree h . The dashed gray line indicates the optimal solution.

the time to return even this first non-optimal overall solution can be significant, practi-
cally negating the anytime behavior of depth-first search (DFS).

To illustrate, consider Figure 1, which depicts the anytime performance (best-known
solution cost over time) of AOBB on two example problem instances. For demonstra-
tion purposes we apply a simple heuristic which has AOBB consider independent sub-
problems by increasing or decreasing hardness, based on the subproblem induced width.
If decomposition yields only one large subproblem and several smaller ones, the latter
can be solved depth-first in relatively little time, to be then combined with the incre-
mentally improving solutions of the larger subproblem. This is exemplified by applying
the “increasing” order to pedigree30x1, which has one hard subproblem and several
other, simple ones: we see a suboptimal overall solution right away which is gradually
improved upon; using the “decreasing” order AOBB spends a long time on solving the
hardest subproblem to completion before returning any overall solution.

In case of pedigree34x2, however, decomposition yields two complex subproblems:
the increasing subproblem order still outperforms its inverse, yet it returns the initial
solution only after about 1,000 seconds. In fact, no possible subproblem ordering can
lead to acceptable anytime behavior in this case due to the structure of subproblems,
clearly highlighting the limits of this approach.

2.1 Breadth-Rotating AND/OR Branch and Bound (BRAOBB)

To remedy this issue, BRAOBB combines depth-first exploration with the notion of
“rotating” through different subproblems in a breadth-first manner. Namely, node ex-
pansion still occurs depth-first as in standard AOBB, but the algorithm takes turns in
processing subproblems, each up to a given number of operations at a time, round-robin
style. This lets us develop all branches of the solution tree “simultaneously”.

More systematically, the algorithm maintains a list of currently open subproblems
and repeats the following high-level steps until completion:

1. Move to next open subproblem P in a breadth-first fashion.
2. Process P depth-first, until either:

(a) P is solved optimally,
(b) P decomposes into child subproblems, or



100 101 102 103 104

Search time in seconds

−280

−275

−270

−265

−260

Lo
g(

pr
ob

ab
ili

ty
)

pedigree31x2, i15 (n=2366 k=5 w=30 h=85)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−232

−230

−228

−226

−224

−222

Lo
g(

pr
ob

ab
ili

ty
)

pedigree34x2, i15 (n=2320 k=5 w=31 h=102)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−58

−57

−56

−55

−54

−53

−52

Lo
g(

pr
ob

ab
ili

ty
)

75-23-1x3, i19 (n=1584 k=2 w=34 h=115)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−148

−146

−144

−142

−140

−138

−136

−134

Lo
g(

pr
ob

ab
ili

ty
)

pdb1dlyx3, i3 (n=300 k=81 w=10 h=25)

or
plain
dive
rotate

Fig. 2. Anytime performance of BRAOBB (“rotate”) compared against “plain” AOBB and two
other schemes (OR search and AOBB with “dive” extension, as outlined in the full article).

(c) a predefined threshold number of operations is reached.

The threshold in (c) is needed to ensure the algorithm does not get stuck in one large
subproblem where the other two conditions, (a) and (b), do not occur for a long time.
Furthermore, in order to focus on a single solution tree at a time, a subproblem is only
considered “open” if it does not currently have any child subproblems. More details,
algorithm pseudo code, and theoretical analysis are given in the full article [1].

Figure 2 shows four examples for the anytime perfomance of BRAOBB. For ref-
erence the plots also include AOBB and plain OR search, as well as AOBB with a
“dive” extension (which performs an initial greedy dive into each subproblem – details
in the full article). From the results it is clear that BRAOBB holds a decisive advantage
over the other schemes evaluated here. It generally returns a first solution quickly and
is consistently the first scheme, or one of the first, to do so. Furthermore, in almost all
cases it proceeds to improve upon the initial solution quickly, again outperforming other
schemes in the evaluation.

The full article also contains a number of summary statistics, for instance showing
that after 5 seconds BRAOBB has found an initial solution for 510 out of 543 problem
instances, compared to 269 for plain AOBB. And after 1 minute, BRAOBB has found
the optimal solution for 321 instances compared to 274 for plain AOBB – again, refer
to the full article for more details [1].

Moreover, the article also provides analysis of BRAOBB from several angles, in-
cluding complexity analysis that shows that BRAOOB retains the favorable asymptotic
guarantees of “plain” AND/OR search.
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