
Bounding Graphical Models Processing by
Hypertree Width

Student: Lars Otten, Advisor: Rina Dechter

Bren School of Information and Computer Sciences,
University of California, Irvine, CA 92697-3425, U.S.A.

{lotten,dechter}@ics.uci.edu

Abstract. In 2000, Gottlob et al. [3] introduced a new graph parameter,
the hypertree width, and showed that it provides a broader characteriza-
tion of tractable constraint networks than the treewidth. In 2005 this ob-
servation was extended to general graphical models [5], showing that the
hypertree width yields bounds on inference algorithms. This paper ex-
plores further the practical properties of the hypertree width parameter
for bounding the complexity of constraint satisfaction and optimization
tasks. To that end we study empirically the effectiveness of the treewidth
vs. hypertree width over common network benchmarks.

1 Introduction

Constraint networks, Bayesian networks, Markov random fields and influence di-
agrams, commonly referred to as graphical models, are all languages for knowl-
edge representation that use graphs to capture conditional independencies be-
tween variables. These independencies allow both the concise representation of
knowledge and the use of efficient graph-based algorithms for query processing.
Inference-based algorithms (e.g., variable-elimination, join-tree clustering) ex-
ploit the independencies captured by the underlying graphical model. They are
known to be time and space exponential in the treewidth of the graph.

Graphical models algorithms, however, are often far more efficient than what
is predicted by the treewidth, especially when the problem instances exhibit
a significant amount of determinism. And indeed, the treewidth is a measure
which is completely blind to the specific representation of the functions; in fact
it assumes that a function defined on r variables will take O(kr) to specify, when
k bounds the variables’ domain size.

In 2000, Gottlob et al. [3] introduced another parameter called hypertree
width and showed it to be more effective at capturing tractable classes of con-
straint networks. In [5], Kask et al. extend the applicability of the hypertree
width to inference algorithms over general graphical models. In this paper we
empirically explore the relevance of the hypertree width to graphical models,
investigating whether the hypertree width yields a better bound than treewidth
in practice.

In Section 2 we provide preliminaries, Section 3 gives an overview of tree
decomposition and hypertree decomposition. Section 4 presents the empirical
evaluation and Section 5 concludes.

2 Background

We assume the usual definitions of directed and undirected graphs.

Definition 1. A hypergraph is a pair H = (V, S) where S = {S1, ..., St} is
a set of subsets of V , called hyper-edges. The primal graph of a hypergraph
H = (V, S) is an undirected graph G = (V,E) such that there is an edge (u, v) ∈
E for any two vertices u, v ∈ V that appear in the same hyper-edge (namely,
there exists Si, s.t., u, v ∈ Si). The dual graph of a hypergraph H = (V, S)
is an undirected graph G = (S,E) that has a vertex for each hyper-edge, and
there is an edge (Si, Sj) ∈ E when the corresponding hyper-edges share a vertex
(Si ∩ Sj 6= ∅).

Definition 2. A hypergraph is a hypertree, also called acyclic hypergraph,
if and only if its dual graph has an edge subgraph that is a tree, such that all
the nodes in the dual graph that contain a common variable form a connected
subgraph.

Definition 3. A graphical model R is a 4-tuple 〈X,D,F,⊗〉 where: (1) X =
{X1, . . . , Xn} is a set of variables; (2) D = {D1, . . . , Dn} is the set of their
respective finite domains of values; (3) F = {f1, . . . , fr} is a set of discrete
real-valued functions, each defined over a subset of variables Si ⊆ X, called its
scope. (4) ⊗ifi ∈ {

∏
i fi,

∑
i fi,oni fi} is a combination operator. The graphical

model represents the combination of all its functions: ⊗r
i=1fi. A reasoning task

is based on a marginalization (elimination) operator, ⇓, and is defined by: ⇓Z1

⊗r
i=1fi, . . . ,⇓Zt

⊗r
i=1fi, where Zi ⊆ X.

For example, for constraint optimization tasks one might have ⇓Z1 ⊗r
i=1fi =

minX

∑r
i=1 fi(X) as the reasoning task, where the fi are the cost functions.

Definition 4. The set of variables X and the scopes S = {S1, . . . , Sr} of a
graphical model defines the graphical model’s hypergraph (X,S). If this hyper-
graph is a hypertree the graphical model is called acyclic.

The special cases of reasoning tasks which we have in mind are constraint
networks, belief networks or mixed networks that combine both [2]. The primary
tasks for constraint networks are finding or counting solutions, they are defined
using relations as functions, and relational join and project as the combination
and marginalization operators. The primary tasks over belief networks are belief
updating and finding the most probable explanation. They are specified using
conditional probability functions defined on each variable and its parents in a
given directed acyclic graph, and use multiplication and summation or maxi-
mization as the combination and marginalization operators [5].

3 Tree and Hypertree Decompositions

Tree clustering schemes have been widely used for constraint processing and for
probabilistic reasoning. The most popular variants are join-tree and junction-
tree algorithms. The schemes vary somewhat in their graph definitions as well

as in the way tree decompositions are processed [1, 7, 3, 8]. However, they all
involve a decomposition of a hypergraph into a hypertree.

Definition 5. [5] Let P be a reasoning task over a graphical model 〈X,D,F,
⊗
〉.

A tree decomposition for P is a triple 〈T, χ, ψ〉, where T = (V,E) is a tree
and χ and ψ are labeling functions that associate with each vertex v ∈ V two
sets, χ(v) ⊆ X and ψ(v) ⊆ F , that satisfy the following conditions:

1. For each fi ∈ F , there is exactly one vertex v ∈ V such that fi ∈ ψ(v).
2. If fi ∈ ψ(v), then scope(fi) ⊆ χ(v).
3. For each variable Xi ∈ X, the set {v ∈ V |Xi ∈ χ(v)} induces a connected

subtree of T . This is also called the running intersection or the connectedness
property.

The treewidth of a tree decomposition 〈T, χ, ψ〉 is w = maxv|χ(v)| − 1. The
treewidth of P is the minimum treewidth over all its tree decompositions.

Algorithm Cluster-Tree Elimination (CTE) is a message-passing algorithm,
where each vertex of the tree sends a function to each of its neighbors. If the tree
contains m edges, then a total of 2m messages will be sent as follows. For each
neighbor v, node u takes all the functions in ψ(u) and all the messages received
by u from all adjacent nodes, and generates their combined function which is
marginalized over the separator with v and sent to v. (For further discussion and
other styles of algorithms such as join-tree clustering (JTC) see [5].)

Theorem 1. [5] Given a reasoning task P over a graphical model 〈X,D,F,
⊗
〉,

and a tree decomposition 〈T, χ, ψ〉, let m be the number of vertices in the tree
decomposition, w its treewidth, sep its maximum separator size, r the number
of input functions in F , deg the maximum degree in T , and k the maximum
domain size of a variable. The time complexity of CTE is O((r+m) ·deg ·kw+1)
and its space complexity is O(m · ksep).

3.1 Hypertree Decomposition

One issue with the treewidth is its sole dependence on the primal graph, ignor-
ing its hypergraph structure completely. For example, an acyclic problem whose
scopes have high arity would have a high treewidth even though it can be pro-
cessed in linear time. In particular, Bayesian networks which are polytrees [6] are
acyclic, yet they have treewidth equal to the maximum family size, which can
be arbitrarily large. For example, the noisy-OR and noisy-AND specifications of
polytrees are linear time, yet their treewidth can be arbitrarily large [6].

The hypertree width introduced by [3] for constraint networks and extended
in [5] for general graphical models, relies on the notion of hypertree decomposi-
tions. As a subclass of tree decompositions, it provides a stronger indicator of
tractability than the treewidth.

Definition 6. [3, 5] Let T = 〈T, χ, ψ〉, where T = (V,E) be a tree decomposition
of a reasoning problem P over a graphical model 〈X,D,F,

⊗
〉. T is a hypertree

decomposition of P if the following additional condition is satisfied:

4. For each v ∈ V , χ(v) ⊆ scope(ψ(v)).

The hypertree width of a hypertree decomposition is hw = maxv |ψ(v)|. The
hypertree width of P is the minimum hypertree width over all its hypertree de-
compositions.

In [3] the complexity of processing hypertree decomposition for solving a
constraint satisfaction problem is analyzed as a function of the hypertree width
hw, it is shown that a hypertree decomposition of a constraint problem can be
processed in time O(m · hw · logt · thw).

In [5] it was shown that the time complexity bound of Theorem 1 can be
extended straight-forwardly to any graphical model that is absorbing relative
to 0. A graphical model is absorbing relative to a 0 element if its combination
operator has the property that x

⊗
0 = 0 ∀x; for example, multiplication has

this property while summation does not. It has been shown that:

Theorem 2. [5] A hypertree decomposition of a reasoning problem that is ab-
sorbing relative to 0 can be processed1 in time O(m · deg · hw · logt · thw) and
space O(thw), where m is the number of edges in the hypertree decomposition,
hw its hypertree width, and t bounds on the size of the relational representation
of each function in R.

Note that if t = kw then Equation 2 becomes: m · hw · w · logk · (kw)hw.
Clearly, in this case, for any tree decomposition, the treewidth-based bound is
far superior than the one provided by its hypertree width. The question we thus
ask is, under what conditions would the complexity bound generated by the
hypertree width be tighter than the bound generated by the treewidth? And
how often are those conditions met in practice?

4 Experiments

In this section we evaluate empirically the treewidth and hypertree width bounds
on various practical probabilistic networks such as coding networks, dynamic
Bayesian networks, genetic linkage instances and CPCS networks used in medical
diagnosis.

Since computing the minimal hypertree width is NP hard in general, we
employed a heuristic method for generating hypertree decompositions that were
recently proposed in [4]. It uses Bucket Elimination (BE) and produces a tree
decomposition of the primal graph given an elimination order and extends it to
a hypertree decomposition by means of set covering heuristics. This results in
upper bounds for both the treewidth and hypertree width.

We looked at about 100 problem instances. Table 1 displays a summary of a
subset of 23 Bayesian networks from the UAI’06 Evaluation Repository2 which
1 The algorithms for processing decompositions assumed in [3] and [5] are slightly

different
2 http://ssli.ee.washington.edu/ bilmes/uai06InferenceEvaluation/

instance class n a k t k̄ t̄ w hw R R̄
BN 20 2843 4 91 910 18.92 213.32 7 4 1.88 -0.38
BN 22 DBN 2425 4 91 910 18.74 193.39 6 3 2.88 0.78
BN 24 1819 4 91 910 20.99 269.41 5 2 3.88 1.75
BN 26 3025 7 10 3645 6.00 1222.67 10 2 2.88 1.61
BN 70 2315 5 36 128 5.38 22.92 86 42 45.34 5.72
BN 71 linkage 1740 5 36 128 6.17 24.23 52 39 -1.25 -12.89
BN 72 2155 5 36 128 6.18 23.94 66 53 -8.97 -20.89
BN 73 2140 4 36 128 5.86 21.57 92 55 27.28 -2.72
BN 74 749 4 36 128 6.44 24.26 28 22 -2.78 -7.82
BN 75 1820 5 36 128 5.76 24.32 100 51 48.16 5.36
BN 76 2155 5 36 128 7.01 28.07 72 40 27.77 2.96
BN 77 1020 4 45 162 9.21 42.48 24 14 8.74 0.35
BN 80 360 12 2 4096 2.00 134.26 22 4 -7.83 -1.89
BN 82 CPCS 360 12 2 4096 2.00 134.26 23 4 -7.53 -1.59
BN 84 360 12 2 4096 2.00 134.26 21 4 -8.13 -2.19
BN 86 422 18 2 262144 2.00 2200.63 23 4 -14.75 -6.45
BN 88 422 18 2 262144 2.00 2200.63 24 5 -19.87 -9.49
BN 126 512 5 2 16 2.00 6.00 58 21 -7.83 1.12
BN 127 coding 512 5 2 16 2.00 6.00 55 22 -9.93 -0.56
BN 128 512 5 2 16 2.00 6.00 56 21 -8.43 0.52
BN 129 512 5 2 16 2.00 6.00 56 22 -9.63 -0.26
BN 130 512 5 2 16 2.00 6.00 54 21 -9.03 -0.09
BN 131 512 5 2 16 2.00 6.00 54 21 -9.03 -0.08

Table 1. Results for experiments with Bayesian networks from the UAI’06 Evaluation
Repository.

we view as more interesting or representative of the overall set. For each test
instance we report the number of variables n, the maximum and average domain
size (k, k̄), the maximum arity a of the conditional probability tables (CPTs) and
the maximum and average tightness (t, t̄), defined as the number of tuples with
non-zero probability. We also record the treewidth w and hypertree width hw
obtained for the BE decomposition heuristic. To quantify the difference between
the two bounds (in orders of magnitude), we define the following ratios:

R = log10

(
kw

thw

)
and R̄ = log10

(
k̄w

t̄hw

)
.

When R is negative the treewidth bound is tighter than the hypertree width
bound. We observe that for problem instances with large domain sizes and rel-
atively tight CPTs the hypertree width bound improves upon the treewidth by
several orders of magnitude. For instance, on problems BN 70 and BN 75, the
difference is more than 40 orders of magnitude in favor of the hypertree width
bound. These networks belong to the genetic linkage analysis domain and are
known to contain a lot of deterministic CPTs.

In contrast, and as expected, on problem instances with small domain sizes
and relatively little determinism, such as coding and CPCS networks, the tradi-
tional treewidth based bound provides a much tighter measure of computational
complexity. We also experimented with deterministic grid networks and networks
derived from the ISCAS’85 digital circuit benchmark. All these networks have
maximum domain sizes of 2 and exhibit a low degree of determinism, therefore
the treewidth bound is indeed superior.

5 Conclusion

It is well known that a graph treewidth provides bounds for many computational
tasks over graphical models (e.g., satisfiability, counting, belief updating, finding
the most likely explanation.). All these tasks are bounded exponentially by the
graph treewidth.

In this paper we show that the hypertree width bound, which was shown to
provide a broader tractability characterization for constraint networks, can be
extended to search and inference algorithms for general graphical models, such
as Bayesian networks, Markov networks, cost networks and so on when functions
are specified as relations.

We explored empirically the practical benefit of hypertree width, compared
to treewidth, in bounding the complexity of algorithms over given problem in-
stances. Statistics collected over 100 instances Bayesian networks (only 23 are
reported for space reasons) provided interesting, yet somewhat sobering infor-
mation. We showed that while the hypertree width is always smaller than the
treewidth, the complexity bound it implies is often inferior to the bound sug-
gested by the treewidth. However, when problem instances possess substantial
determinism and when the functions have high arity, the hypertree width can
provide bounds that are many orders of magnitude tighter and therefore far more
informative than the treewidth. This demonstrates the added sensitivity of the
hypertree width to the hypergraph structure and to the functions’ specification.

In summary, our study suggests that the hypertree width is a useful and in-
formative parameter for characterizing the complexity of graphical models task,
beyond the treewidth. In practice it can yield a tighter bound on complexity only
when functions are defined on large scopes and when the function representation
is quite sparse.

References

1. R. Dechter and J. Pearl: Tree Clustering for Constraint Networks. Artificial Intelli-
gence 38 (1989): 353–366.

2. R. Dechter and R. Mateescu: Mixtures of deterministic-probabilistic networks and
their AND/OR search space. In Proceedings of UAI’04 : 120–129.

3. G. Gottlob, N. Leone, and F. Scarcello: A comparison of structural CSP decompo-
sition methods. Artificial Intelligence 124 (2000): 243–282.

4. A. Dermaku, T. Ganzow, G. Gottlob, B. McMahan, N. Musliu, M. Samer: Heuris-
tic Methods for Hypertree Decompositions. Technical Report DBAI-TR-2005-53,
Vienna University of Technology, 2005

5. K. Kask, R. Dechter, J. Larrosa, and A. Dechter: Unifying tree decompositions for
reasoning in graphical models. Artificial Intelligence 166 (2005): 165–193.

6. J. Pearl: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
7. S. L. Lauritzen and D. J. Spiegelhalter: Local Computations with Probabilities on

Graphical Structures and Their Application to Expert Systems. Journal of the Royal
Statistical Society. Series B 50(2) (1988): 157–224.

8. P. P. Shenoy: Binary join trees for computing marginals in the Shenoy-Shafer ar-
chitecture. Int. J. Approx. Reasoning 17 (1997): 239–263.

