
Randomization in Constraint Programming
for Airline Planning

Lars Otten1, Mattias Grönkvist1,2, and Devdatt Dubhashi1

1 Department of Computer Science and Engineering,
Chalmers University of Technology, 41296 Gothenburg, Sweden

mail@lotten.net, dubhashi@cs.chalmers.se
2 Jeppesen (Carmen Systems AB),

Odinsgatan 9, 41103 Gothenburg, Sweden
mattias.gronkvist@jeppesen.com

Abstract. We extend the common depth-first backtrack search for con-
straint satisfaction problems with randomized variable and value selec-
tion. The resulting methods are applied to real-world instances of the
tail assignment problem, a certain kind of airline planning problem. We
analyze the performance impact of these extensions and, in order to ex-
ploit the improvements, add restarts to the search procedure. Finally
computational results of the complete approach are discussed.

1 Introduction

Constraint programming has received increasing attention in a multitude of ar-
eas and applications and has successfully been incorporated into a number of
commercial systems.

Among other things it has been deployed in planning for transportation:
Grönkvist [7] uses constraint programming to solve the tail assignment prob-
lem, an airline planning variant. Gabteni and Grönkvist [3] combine this with
techniques from integer programming, in order to obtain a complete solver and
optimizer, which is currently in use at a number of medium-sized airlines.

In Gabteni and Grönkvist’s work, special constraints that internally employ
the pricing routine of a column generation integer programming solver are used
to tackle arising computational issues. In this paper, however, we set out to take
an orthogonal approach, which is not dependent on column generation but rather
relies on pure constraint programming techniques. Furthermore, in contrast to
the usage of specialized propagation algorithms, our approach is generic at heart,
hence it is more easily adaptable to problems other than tail assignment.

Recently Gomes et al. [5] have made considerable progress in exploiting the
benefits of randomization in backtrack search for constraint programming, they
also applied their findings to a number of more or less artificially constructed
problem instances.

We pursue this randomized approach with the tail assignment problem, for
which we have access to a number of real-world instances. We show how this
helps in overcoming the performance bottlenecks mentioned in [3, 7].



2

Our contribution is as follows: We review and present a number of new generic
randomized schemes for variable and value selection for backtrack search. We dis-
cuss how these techniques enhance performance for the tail assignment problem.
Finally, we explain how different restart strategies can systematically make use
of the improvements. We then demonstrate that this does in fact work very well
for practical purposes in real-life problem instances.

We introduce the tail assignment problem in the general context of airline
planning in Sect. 2 and give a formulation as a constraint programming problem.
Section 3 describes the randomized extensions to the backtrack search proce-
dure and gives some first computational results. In Sect. 4 we present restart
techniques as a way to exploit the benefits of randomization and discuss the
respective performance results on our real-world instances. Section 5 concludes
and outlines future research directions.

2 Problem Description

The process of airline planning is commonly divided into several isolated steps:
During timetable creation a schedule of flights (referred to as legs) is assembled
for a certain time interval. Given such an airline timetable, fleet assignment
usually means determining which type of aircraft will cover which timetable entry
while maximizing revenue. The aircraft routing process then assigns individual
aircraft to the elements of the schedule for each fleet (or subfleet), mainly with
focus on maintenance feasibility. This, in turn, is followed by crew rostering,
which selects the required personnel for each flight leg.

In practice all these steps will be subject to a number of operational con-
straints (aircraft range limitations, noise level restrictions at certain airports
etc.) and optimization criteria, for example minimizing the resulting costs or
keeping the aircraft deployment as evenly distributed as possible.

Since airline planning has received widespread attention in a multitude of
respects, there is a lot of related work. For lack of space we refer to Grönkvist
[8] for a comprehensive overview and limit ourselves to two references here:

Gopalan and Talluri [6] give a general survey of several of the common prob-
lems and methods and Barnhart et al., for instance, discuss combined fleet as-
signment / aircraft routing in [2].

2.1 The Tail Assignment Problem

The problem of tail assignment denotes the process of assigning aircraft (iden-
tified by their tail number) to each leg of a given airline timetable. As a result
one obtains a route for each aircraft, consisting of a sequence of legs. Hence
tail assignment essentially combines fleet assignment and aircraft routing as de-
scribe before. There are several practical, operational advantages inherent to this
approach, for details we refer to Gabteni and Grönkvist [3].

In their work they make use of a combined solution approach, employing
techniques from both integer programming (in particular column generation)
and constraint programming.



3

The motivation for this is that constraint programming usually finds a fea-
sible but not necessarily optimal solution rather quickly, whereas column gener-
ation converges slowly but ensures optimality. We will henceforth focus on the
constraint programming component.

2.2 A Constraint Programming Model

We now formulate the tail assignment problem as a constraint satisfaction prob-
lem (CSP). First we note that, instead of flight legs and aircraft, we will speak
of activities and vehicles, which is more general and allows us for example to
include scheduled maintenance into the problem. We then start by defining the
following:

F = {f1, . . . , fn} , the set of all activities.
T = {t1, . . . , tm} , the set of all vehicles.

We will think of each activity as a node in an activity network : Initially
each vehicle is assigned a unique start activity. Each activity will eventually be
connected to the two activities pre- and succeeding it. Thus each vehicle’s route
becomes a path through the network. In fact, since we will connect a route’s end
activity to its start activity, we obtain exactly m cycles, one for each vehicle.

Now, to capture this within a CSP, we introduce a number of variables:
For all f ∈ F we have successorf with domain D(successorf ) ⊆ F initially
containing all activities possibly succeeding activity f . Equivalently, for all f ∈
F , we have vehiclef with domain D(vehiclef ) ⊆ T initially containing all the
vehicles that are in principle allowed to operate activity f .

Note that with the proper initial domains we cover a lot of the problem
already. For example we can be sure that only legally allowed connections be-
tween activities will be selected in the final solution. Moreover we can implement
a preassigned activity (like maintenance for a specific vehicle) by initializing the
respective vehicle variable with an unary domain.

Also observe that any solution to the tail assignment problem can be repre-
sented by a complete assignment to either all successor or vehicle variables –
we can construct any vehicle’s route by following the successor links from its
start activity, or we can group all activities by their vehicle value and order
those groups chronologically to obtain the routes.

To obtain stronger propagation behavior later on we also introduce a third
group of variables, similar to the successor variables: For all f ∈ F we have
predecessorf with domain D(predecessorf ) ⊆ F initially containing all ac-
tivities possibly preceding activity f .

Introducing constraints to our model, we first note that we want all routes
to be disjoint – for instance two different activities should not have the same
succeeding activity. Hence, as a first constraint, we add a global alldifferent
over all successor variables.

Moreover, since the successor and predecessor are conceptually inverse to
each other, we add a global constraint inverse(successor,predecessor) to



4

our model, which is in practice implemented by means of the respective number
of binary constraints and defined likewise:

∀ i, j : fi ∈ D(successorj) ⇐⇒ fj ∈ D(predecessori) .

This also implicitly ensures disjointness with respect to the predecessor
variables, hence we need not add an alldifferent constraint over those.

Finally, to obtain a connection with the vehicle variables, we define another
global constraint, which we call tunneling. It observes all variable domains and,
each time a variable gets instantiated, posts other constraints according to the
following rules (where element(a, B, c) requires the value of Ba to be equal to c):

vehiclef == t ⇒ POST element(successorf , vehicle, t)
POST element(predecessorf , vehicle, t)

successorf == f ′ ⇒ POST vehiclef = vehiclef ′

predecessorf == f ′ ⇒ POST vehiclef = vehiclef ′

These constraints already suffice to model a basic version of the tail assign-
ment problem as described above, with slightly relaxed maintenance constraints.
Still we will in practice add a number of constraints to improve propagation and
thus computational performance: For example we can add alldifferent con-
straints over vehicle variables of activities that overlap in time (for certain
cleverly picked times).

When solving this CSP we will only branch on the successor variables,
meaning only these are instantiated during search. We do this because successor
modifications are propagated well thanks to the consistency algorithm of the
alldifferent constraint imposed on them.

2.3 Remarks

The CSP modeled above is essentially what Gabteni and Grönkvist [3] refer to
as CSP-TASrelax – “relax” since it does not cover some of the more complicated
maintenance constraints. Still this model is used in the final integrated solution
presented in [3].

What is of interest to us, however, is that for this model Gabteni and
Grönkvist [3] report problems with excessive thrashing for problem instances
containing several different types of aircraft (and thus more flight restrictions
inherent in the initial vehicle variable domains). Thrashing means that the
search procedure spends large amounts of time in subtrees that do not contain
a solution, which results in a lot of backtracking taking place and consequently
very long search times.

Gabteni and Grönkvist [3] try to resolve this by extending the model and
introducing additional constraints, for which they implement strong propagation
algorithms that perform elaborate book-keeping of reachable activities and sub-
routes and thereby are able to rule out certain parts of the search tree in advance.



5

It is worth noting that these propagation algorithms make use of the pricing rou-
tine of a column generation system from the area of integer programming. The
resulting extended model is then referred to as CSP-TAS.

However, with the results of Gomes et al. [5] in mind, we take a different and,
as we believe, more general approach to reduce thrashing, modifying the back-
track search procedure itself while leaving the model CSP-TASrelax unchanged.
Our solution also supersedes the use of elements from integer programming,
which are often not readily available for a CSP but require additional effort.

On another note we should point out that, although in principle tail assign-
ment depicts an optimization problem, in this paper we neglect the aspect of
solution quality and focus on finding any one solution. Experience shows that
computing any solution is often sufficient, especially if it can be achieved quickly.
Moreover, even in situations where one wants a close-to-optimal solution, finding
any feasible solution is useful as a starting point for improvement heuristics and
as a proof that a solution exists.

3 Randomizing Backtrack Search

Standard backtrack search for constraint programming interleaves search with
constraint propagation: The constraints are propagated, one search step is per-
formed, the constraints are propagated and so on. In case of a failure, when the
CSP becomes inconsistent, i. e. impossible to solve, we rollback one or several
search steps and retry.

Our focus is on the search step: Generally one starts with choosing the next
variable to branch on; after that one of the values from the variable’s domain is
selected, to which the variable is then instantiated. Both these choices will be
covered separately. A number of ideas have already been introduced by Gomes
et al. [4, 5]; we will briefly review their findings and adapt the concept to our
problem by introducing enhanced randomized selection schemes.

3.1 Variable Selection

There exist several common, nonrandomized heuristics for finding the most
promising variable to branch on: For example we pick the variable with the
smallest domain size. We will call this scheme min-size, it is sometimes also
known as fail-first.

Alternatively we choose the variable with the smallest degree, where the
degree of a variable is the number of constraints related to it; this heuristic will
be referred to as min-degree. Grönkvist [7] uses min-size, yet we performed our
tests with both heuristics.

In case of ties, for instance when two or more variables have the same min-
imal domain size, these heuristics make a deterministic choice, for example by
lexicographical order of the variables. This already suggests a straightforward
approach to randomize the algorithm: When we encouter ties we pick one of the
candidates at random (uniformly distributed).



6

With sophisticated heuristics it can happen that only one or very few vari-
ables are in fact assigned the optimal heuristic value, meaning that the random
tie-breaking will have little or no effect after all. To alleviate this, Gomes et
al. suggest a less restrictive selection process, where the random choice is made
between all optimal variables and those whose heuristic value is within an H %
range of the optimum.

For our problem, however, we found that the said situation rarely occurs, and
in fact the less restrictive H % rule had a negative effect on search performance.

Instead we tried another similar but more general variable selection scheme:
For a certain base b ∈ R, we choose any currently unassigned variable x with
a probability proportional to the value b−s(x), where s(x) is the current size of
the variable’s domain. Observe that for increasing values of b we will gradually
approach the min-size scheme with random tie-breaking as described above.

3.2 Value Selection

Once we have determined which variable to branch on, the simplest way of
adding randomization for the value selection is to just pick a value at random
(again uniformly distributed), which is also suggested by Gomes et al. [4]. This
already works quite well, yet for the problem at hand we developed something
more specific.

As a nonrandomized value ordering heuristic for the tail assignment problem,
Grönkvist [7] suggests to choose the successor activities by increasing connection
time (recall that we only branch on the successor variables). Hence in our model
we order the activities by increasing start time, so that obtaining the shortest
possible connection time is equivalent to selecting the smallest value first.

We then take this idea as an inspiration for the following randomized value
selection scheme: Assuming a current domain size of n possible values, we pick
the smallest value (representing the shortest possible connection time) with prob-
ability p ∈ (0, 1), the second smallest with probability p · q, the third smallest
with probability p · q2 and so on, for a q > 0; in general, we choose the i-th
smallest with probability p · qi−1.

Having this idea in mind, we note the following: Given n and either p or q,
we can compute q or p, respectively. To do so we take the sum over all elements’
probabilities, which has to be 1 for a valid probability distribution. The resulting
equation can then be solved for either p or q:

1 != p + pq + pq2 + . . . + pqn−1 = p

n−1∑

i=0

qi = p · 1− qn

1− q

Obviously, if we set q = 1 we obtain the uniform distribution again. With
q ∈ (0, 1) we assign the highest probability to the smallest value in the domain,
whereas p > 1 gives preference to the hightest value. Trying different values, we
eventually settled with q = 0.3 and computed p accordingly each time.

Also note that for n →∞ we obtain q → (p−1) and thus a standard geomet-
ric distribution. For this reason we will refer to this scheme as the “geometric”
distribution in general, even though we have in practice only finite values of n.



7

3.3 Notes on Randomness

As usual the terms “randomness” and “at random” may be a bit misleading
– in fact, for our random choices we use the output of a linear congruential
random number generator [9], which is purely deterministic at heart. Thus, for
any given random seed (the initial configuration of the generator), the sequence
of numbers produced is always the same and we can only try to create the illusion
of randomness from an external point of view. That’s why these numbers are
often referred to as pseudorandom numbers.

It has been shown, for instance by Bach [1] and Mulmuley [11], that pseu-
dorandomness still works very well in practice and that the said theoretical
shortcoming does not considerably impair the algorithm’s performance.

Now it is clear that, for a given problem instance, each run of the random-
ized backtrack search algorithm is solely dependent on the random seed1. For
a certain seed the search will always explore the search space in the same way
– in particular the same solution will be produced and an identical number of
backtracks will be required.

With this in mind it is understandable why this concept is sometimes also
referred to as “deterministic randomness”. From a commercial point of view,
however, this is actually a welcome and sometimes even necessary property,
since it enables unproblematic reproduction of results, for instance for debugging
purposes.

3.4 Computational Results

For our performance tests we obtained several real-world instances of the tail
assignment problem from Carmen Systems, varying in size and complexity:

– 1D17V: 17 vehicles (only one type), 191 activities over one day.
– 1W17V: 17 vehicles (only one type), 727 activities over one week.
– 1D30V: 30 vehicles (three different types), 129 activities over one day.
– 3D74V: 74 vehicles (nine different types), 780 activities over three days.

In the first two instances, 1D17V and 1W17V, all aircraft are of the same type,
therefore there are almost no operational constraints as to which vehicle may
and may not operate a flight. The two instances 1D30V and 3D74V, however, com-
prise several different types of aircraft and hence exhibit numerous operational
constraints.

All practical tests were performed using the Gecode constraint programming
environment [15]. The package’s C++ source code is freely available, hence it was
rather easy for us to implement our custom propagators and add randomization
to the search engine.

We first tried to solve all instances with the nonrandomized backtrack search,
using different variable selection heuristics and the smallest-value-first value se-
lection heuristic . The results are shown in Table 1. As expected, given the results
1 Note that the nonrandomized run can be identified with a specific randomized run

resulting from a suitable random seed.



8

Table 1. Backtracks before finding a solution using nonrandomized search

1D17V 1W17V 1D30V 3D74V

min-size 8 1 > 1000000 5
min-degree 14 1 > 1000000 > 1000000

from Gabteni and Grönkvist [3], the two instances involving just one vehicle type
can be solved rather easily, with only a few backtracks. The more constrained
instances, however, exhibit more problematic runtime behavior: We aborted the
search after running without result for several hours on a 2 GHz CPU. In the
light of our further results, we regard the short run using the min-size heuristic
on the 3D74V instance as a “lucky shot”.

To assess the impact of the randomized extensions specified above, we in-
troduce a random variable X denoting the number of backtracks needed by the
randomized backtrack search instance to find a solution. We are then interested
in the probability of finding a solution within a certain number of backtracks x,
formally P (X ≤ x).

In Fig. 1 we plot this probability for all four problem instances, using the
geometric value distribution and both min-size or min-degree with random tie-
breaking. For each curve we performed 1.000 independent runs, with different
random seeds.

Consistent with the previous findings, the two less constrained instances show
a rather satisfactory search cost distribution, with 1W17V approaching 100% at
around 10 backtracks only; at this point 1D17V is around 60% successful, it
reaches 100% after a few thousand backtracks – although the respective CP
model has fewer variables, the instances’s connection structure appears to be
more complex.

However, the situation is not as good for the distributions arising from the
more constrained instances: For 1D30V with the randomized min-degree heuristic
we get close to 50% after only 10 backtracks, but from then on the probability
does not increase notably; with min-size the success rate is slightly lower.

The biggest and most constrained instance, 3D74V, can be solved within 20
backtracks in roughly 40% of the runs, using the randomized min-size heuristic.
The success ratio then slowly increases towards 45% as we allow more backtracks.
The randomized min-degree performs considerably worse, with slightly more
than 20% success after 20 backtracks, subseqeuently increasing towards 25%
with more backtracks.

In a next step we applied the inversely exponential scheme described pre-
viously, where each unassigned variable x is selected with probability propor-
tional to b−s(x) (s(x) being the current domain size of x). We tested this for
b ∈ {e, 2.0, 2.5, 3.0, 3.5, 10.0} with 1D30V and 3D74V and compared it to the best
solutions from Fig. 1. The results are given in Figs. 2(a) and 2(b), respectively.

For the 1D30V instance the inversely exponential scheme can partly outper-
form min-degree with randomized tie-breaking. Applied to the 3D74V instance,



9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104 105

F
(x

)

Number of backtracks

1D17V degr
1D17V size

1W17V degr
1W17V size
1D30V degr
1D30V size
3D74V degr
3D74V size

Fig. 1. Plot of the search cost distributions, where F (x) := P (X ≤ x)

however, it is clearly inferior to min-size with randomized tie-breaking, only as
b grows does the success ratio get close (since, as noted earlier, for increasing b
we approach the randomized min-size again).

All in all we think that the min-size heuristic with randomized tie-breaking is
the best choice. Although it does not produce the best search cost distributions
in some cases, its performance is never far from the respective optimum.

3.5 Analysis of Results

We have noticed before that the two instances with only one vehicle type involved
can be solved rather easily by the nonrandomized backtrack search already. This
is also confirmed by the cost distribution for the randomized search and thus not
very surprising. The other two instances, however, seem considerably harder.

This behavior can be explained by the presence of critically constrained vari-
ables in these instances (and the related concept of backdoors [13, 14]): Once this
subset of critical variables has been fixed, the remaining problem is potentially
a lot easier and everything else more or less matches up automatically.

Therefore, if the randomized heuristic picks these variables right at the start
and “good” values are assigned, a solution will probably be found within a few
backtracks. On the other hand, if we start out with noncritical variables or assign
“bad” values, the algorithm will explore large portions of the search space to no
avail. The former represents the left-hand tail of the distribution, whereas the
latter results in the long, rather flat remaining distribution.



10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

100 101 102 103 104

F
(x

)

Number of backtracks

1D30V degr
1D30V exp e   
1D30V exp 2.0
1D30V exp 2.5
1D30V exp 3.0
1D30V exp 3.5
1D30V exp 10 

(a) 1D30V

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

100 101 102 103 104

F
(x

)

Number of backtracks

3D74V size
3D74V exp e   
3D74V exp 2.0
3D74V exp 2.5
3D74V exp 3.0
3D74V exp 3.5
3D74V exp 10 

(b) 3D74V

Fig. 2. Results for the inversely exponential variable selection

4 Restarts

As we saw in Sect. 3, for the more constrained instances the randomized search
can quite easily “get stuck” in the right-hand side of the distribution, so that
it will take a lot of backtracks to reach a solution. On the other hand we also
observed (via the left-hand tail of the distribution) a nonnegligible probability
of finding a solution very quickly, with only a few backtracks.

Naturally we want to exploit this fact; a straightforward way to achieve that
is the introduction of restarts into the search procedure: We explore the search
tree until a certain number of backtracks has been necessary (the cutoff value),
at which point we assume that we have descended into one of the “bad” subtrees.
Thus we abort and restart the search from the initial configuration – this time
hoping to make better randomized choices along the way.

4.1 Restart Strategies

The crucial question is then how many backtracks we allow before restarting. A
number of such restart strategies have previously been proposed.

Gomes et al. [4] propose a fixed cutoff value, meaning we restart the search
every c ∈ N backtracks; they call this the rapid randomized restart strategy. In
their work the optimal cutoff value is determined by a trial-and-error process.

If one has more detailled knowledge about the specific search cost distribution
of a problem, one can mostly avoid the trial-and-error approach – however, this
knowledge is not always available. Moreover the optimal cutoff value potentially
needs to be redetermined for every problem, which does not make this approach
very general.

Therefore Walsh [12] suggests a strategy of randomization and geometric
restarts, where the cutoff value is increased geometrically after each restart by



11

a constant factor r > 1. This is obviously less sensitive to the underlying distri-
bution and is reported to work well by Walsh [12] and Gomes et al. [4].

An alternative general approach is the universal strategy introduced by Luby
et al. [10]. They show that the expected number of backtracks for this strategy is
only a logarithmic factor away from what you can expect from an optimal strat-
egy. The sequence of cutoff values begins with 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,. . . , it
can be computed via the following recursion:

ci =
{

2k−1, if i = 2k − 1 ,
ci−2k−1+1, if 2k−1 ≤ i < 2k − 1 .

4.2 Computational Results

We henceforth focus on the two instances 1D30V and 3D74V, as their constrained-
ness and the resulting randomized search cost distribution (cf. Sect. 3.4) predes-
tines them for the introduction of restarts.

We solved each of the two instances with different cutoff values (i. e. the
constant cutoff value or the initial value in case of the geometric and universal
strategy). For each configuration we ran several hundred iterations with differing
random seeds and computed the arithmetic mean of the number of backtracks
required to find a feasible solution.

The resulting graphs for the constant cutoff and the universal strategy are
given in Fig. 3(a), where the x-axis value is used as a constant multiplier for the
universal strategy. For the geometrically increasing cutoff we varied the factor
r ∈ {1.1, 1.2, 1.3}, the plots of the respective averages are shown in Fig. 3(b).

4.3 Analysis of Results

To begin with, we note that the introduction of restarts does exactly what it was
intended to do, averting the long tails of the randomized search cost distributions
observed in Sect. 3.4. For most configurations a couple of dozen total backtracks
suffices to find a solution.

Looking at the left-hand side of the distributions in Fig. 1, it was to be
expected that the constant cutoff strategy can deal only poorly (or not at all)
with low cutoff values – the chance of a very short run is too small, especially
for the 3D74V instance. Both other restart strategies, with the cutoff increasing
over time, can handle these low initial values considerably better, since they will
eventually allow a sufficiently high cutoff anyway.

On the other hand, just as noted by Luby et al. in [10], a constant cutoff
permits exploiting well-fitting cutoff values more effectively than via the other
strategies. This is because, above a certain threshold, increasing the cutoff does
not result in a considerably higher probability of finding a solution (cf. the long,
almost horizontal tail of the distributions in Fig. 1).

But as we pointed out before, setting an optimal or close-to-optimal cut-
off requires knowledge about an instance’s search cost distribution, which is
mostly not available and may be computationally expensive to obtain. This is



12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0  5  10  15  20  25  30  35

A
ve

ra
ge

 n
um

be
r 

of
 b

ac
kt

ra
ck

s 
un

til
 s

ol
ut

io
n 

is
 fo

un
d

Cutoff value

1D30V const
1D30V  univ 
3D74V const
3D74V  univ 

(a) Constant and universal cutoff strategy

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0  5  10  15  20  25  30  35

A
ve

ra
ge

 n
um

be
r 

of
 b

ac
kt

ra
ck

s 
un

til
 s

ol
ut

io
n 

is
 fo

un
d

Initial cutoff value

1D30V r=1.1
1D30V r=1.2
1D30V r=1.3
3D74V r=1.1
3D74V r=1.2
3D74V r=1.3

(b) Geometric cutoff strategy

Fig. 3. Average number of backtracks after applying restarts to the search procedure



13

the strength of the variable strategies, where the geometric one seems to hold a
slight advantage over the universal one, despite the theoretical logarithmic up-
per bound on the latter’s performance (cf. Sect. 4.1) – the universal strategy’s
intermediate fallbacks to low values do not fit the distributions at hand.

4.4 Search Completeness

One issue with the randomized extensions as described above is that we sacri-
fice search completeness: Although the random number generator used for the
random choices will most probably be in a different state after each restart,
one might still end up making the same decisions as before, thereby exploring
the same parts of the search space over and over again. Hence, although the
probability is evidently low, it is in theory possible to search indefinitely, either
missing an existing solution or not establishing the problem’s infeasibility.

In principle, with the geometric and universal restart strategy one will even-
tually have a sufficiently high cutoff value, so that the whole search space will be
explored before restarting and completeness is implicitly ensured. But in prac-
tice, given the exponential size of the search space, this will take far too long –
also it does not apply to the constant cutoff value strategy.

Therefore we extended the randomized search with a special tree datastruc-
ture for the search history, where all visited search tree nodes and “dead ends”
(where a backtrack was required) are recorded, thus making sure that the search
will not descend into a previously failed subtree.

However, while completeness is a nice theoretic property to attain, we found
that in practice it didn’t result in enough of a difference to justify the additional
processing time and memory consumption, especially since all our instances were
known in advance to have at least one solution.

A comparison for the 3D74V instance, using both the constant cutoff and uni-
versal strategy, is plotted in Fig. 4. In some cases the average number of back-
tracks increases with the introduction of the book-keeping, in some it decreases
slightly – probably the differences are partly also due to statistical variations in
the relatively low number of runs we performed for each cutoff value.

5 Conclusion and Outlook

Real-world instances of the tail assignment problem impose serious performance
problems on standard backtrack search algorithms. Previously this has been
solved by the introduction of specialized constraints, that internally make use of
the pricing routine of a column generation system.

As an alternative to this we have demonstrated how the use of randomization
and restarts can greatly improve the performance of such search algorithms when
run on tail assignment instances, reducing the required number of backtracks by
several orders of magnitude.

In particular we have shown that with suitable but still generic randomized
extensions to the backtrack search procedure we can obtain a substantial proba-
bility of finding a solution within just a few backtracks, which we related to the



14

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0  5  10  15  20  25  30  35

A
ve

ra
ge

 n
um

be
r 

of
 b

ac
kt

ra
ck

s 
un

til
 s

ol
ut

io
n 

is
 fo

un
d

Cutoff value

3D74V const         
3D74V const mem
3D74V univ           
3D74V univ mem  

Fig. 4. Impact of memorizing the search history across restarts

concept of critically constrained variables and backdoors. However, depending
on the random choices throughout the search process, we still encounter a lot of
very longs runs as well.

Therefore we added restarts to the search engine, which, as we noted, has
proven rewarding for other authors before [5, 12]. The intention in mind is to
exploit the presence of relatively short runs, at the same time avoiding to “get
stuck” in the long tail of the search cost distribution. The presented results
confirm that this idea works very well for practical purposes.

We have also argued that the randomness is kept “controllable”, thereby
ensuring reproducibility, which is an important consideration for a potential
deployment in a commercial system.

So far we have not been able to experiment with a number of really big prob-
lem instances, spanning over a month and comprising well above 2000 activities.
This was due to memory limitations on the machines we had at our disposal,
in connection with the underlying concept of the Gecode environment, which
employs copying and recomputation rather than the potentially more memory-
efficient trailing. However, based on our results we believe that these instances
would profit from our approach as well.

To summarize, we feel that randomization and restarts are an effective yet
general way to combat computational hardness in constraint satisfaction prob-
lems. Consequently, as Gomes et al. note [4], this concept is already being de-
ployed in a number of production systems.

In fact, given that our findings show great potential, the possibility of ex-
tending the current Carmen Systems tail assignment optimizer accordingly will
be investigated further. In this respect it will certainly be interesting to explore
how well randomization and restarts interact with the aforementioned special-
ized constraints currently used in the system.



15

Acknowledgments

We would like to thank the developers of Gecode, Christian Schulte, Guido Tack
and Mikael Lagerkvist, for their constant willingness to answer our questions
and their help with a number of implementation pitfalls.

References

1. E. Bach: Realistic analysis of some randomized algorithms. Journal of Computer
and System Sciences 42 (1991): 30–53.

2. C. Barnhart, N. L. Boland, L. W. Clarke, E. L. Johnson, G. L. Nemhauser, and
R. G. Shenoi: Flight string models for aircraft fleeting and routing. Transportation
Science 32 (1998): 208–220.

3. S. Gabteni and M. Grönkvist: A hybrid column generation and constraint program-
ming optimizer for the tail assignment problem. In Proceedings of CPAIOR’06.

4. C. Gomes, B. Selman, N. Crato, and H. Kautz: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. Journal of Automated Reasoning 24
(2000): 67–100.

5. C. Gomes, B. Selman, and H. Kautz: Boosting combinatorial search through ran-
domization. In Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI’98).

6. R. Gopalan and K. T. Talluri: Mathematical models in airline schedule planning: A
survey. Annals of Operations Research 76 (1998): 155–185.

7. M. Grönkvist: A constraint programming model for tail assignment. In Proceedings
of CPAIOR’04 : 142–156.

8. M. Grönkvist: The tail assigment problem. PhD thesis, Chalmers University of Tech-
nology, Gothenburg, Sweden (2005).

9. D. H. Lehmer: Mathematical methods in large-scale computing units. In Proceedings
of the 2nd Symposium on Large-Scale Digital Calculating Machinery (1949): 141–
146.

10. M. Luby, A. Sinclair, and D. Zuckerman: Optimal speedup of Las Vegas algorithms.
Information Processing Letters, Vol. 47 (1993): 173–180.

11. K. Mulmuley: Randomized Geometric Algorithms and Pseudorandom Generators.
Algorithmica 16 (1996): 450–463.

12. T. Walsh: Search in a small world. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI’99): 1172–1177.

13. R. Williams, C. Gomes, and B. Selman: Backdoors to typical case complexity.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’03).

14. R. Williams, C. Gomes, and B. Selman: On the connections between back-
doors, restarts, and heavy-tailedness in combinatorial search. In Proceedings of the
6th International Conference on Theory and Applications of Satisfiability Testing
(SAT’03).

15. Gecode: Generic constraint development environment. http://www.gecode.org/


