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ABSTRACT
Motivation: The use of dense single nucleotide polymorphism (SNP)
data in genetic linkage analysis of large pedigrees is impeded by
significant technical, methodological and computational challenges.
Here we describe Superlink-Online SNP, a new powerful online
system which streamlines the linkage analysis of SNP data. It
features a fully integrated flexible processing workflow comprising
both well-known and novel data analysis tools, including SNP
clustering, erroneous data filtering, exact and approximate LOD
calculations, and maximum-likelihood haplotyping. The system draws
its power from thousands of CPUs, performing data analysis tasks
orders of magnitude faster than a single computer. By providing
an intuitive interface to sophisticated state-of-the-art analysis tools
coupled with high computing capacity, Superlink-Online SNP helps
geneticists unleash the potential of SNP data for detecting disease
genes.
Results: Computations performed by Superlink-Online SNP are
automatically parallelized using novel paradigms, and executed on
unlimited number of private or public CPUs. One novel service
is large-scale approximate Markov Chain-Monte Carlo (MCMC)
analysis. The accuracy of the results is reliably estimated by running
the same computation on multiple CPUs and evaluating the Gelman-
Rubin Score to set aside unreliable results. Another service within
the workflow is a novel parallelized exact algorithm for inferring
maximum-likelihood haplotyping. The reported system enables
genetic analyses that were previously infeasible. We demonstrate the
system capabilities via a study of a large complex pedigree affected
with metabolic syndrome.

∗to whom correspondence should be addressed

Availability: Superlink-Online SNP is freely available for researchers
at http://cbl-hap.cs.technion.ac.il/superlink-snp . The system source
code can also be downloaded from the system website.
Contact: omerw@cs.technion.ac.il

1 INTRODUCTION
Genetic linkage analysis is a statistical method for locating disease-
susceptibility genes by finding patterns of excess co-segregation
between a genetic marker and a phenotype of interest in a pedigree
(Lin and Zhao, 2010; Ott, 1999). This method is recently gaining
newfound interest, thanks to the rapidly growing availability of
high-throughput sequencing data (Bailey-Wilson and Wilson, 2011;
Bamshad et al., 2011; Vieland and Devoto, 2011). Namely, linkage
analysis of large pedigrees can be better powered and more cost
effective than genome-wide association studies for discovering rare
variants (Wijsman, 2012). It has recently been shown that genetic
linkage analysis can be performed using SNP genotypes extracted
from sequencing data (Smith et al., 2011), demonstrating the
necessity of efficient tools capable of analyzing SNP data in large
pedigrees.

Existing packages which perform exact linkage analysis, such
as LIPED (Ott, 1974), LINKAGE (Lathrop et al., 1985),
MENDEL (Lange et al., 1988), FASTLINK (Cottingham et al.,
1993), GENEHUNTER (Kruglyak et al., 1996), VITESSE
(O’Connell, 2000), Superlink (Fishelson and Geiger, 2002),
Merlin (Abecasis et al., 2002) and Allegro (Gudbjartsson et al.,
2005), use either the Elston-Stewart algorithm (Elston and Stewart,
1971), the Lander-Green algorithm (Lander and Green, 1987) or a
combination thereof. While these packages have been successfully
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Fig. 1: A typical analysis workflow in Superlink-Online SNP.

employed for exact genetic linkage analysis of moderately sized
families, they are not suitable for analyzing dense SNP data in
large pedigrees due to the high computational complexity of the
aforementioned algorithms.

Several approaches have been proposed to circumvent the high
complexity of linkage analysis in large pedigrees. One approach
is to split a large pedigree into several smaller, easier to analyze
pedigrees (Axenovich et al., 2008; Bellenguez et al., 2009b; Falchi
et al., 2004; Falchi and Fuchsberger, 2008; Kirichenko et al., 2009;
Liu et al., 2008; Pankratz and Iturria, 2001), but this can result in
significant power loss (Dyer et al., 2001). Another well established
approach is the approximate analysis of large pedigrees via MCMC,
available in packages such as Loki (Heath, 1997), MORGAN (Tong
and Thompson, 2008) and SimWalk2 (Sobel and Lange, 1996).
The main drawback of MCMC methods is the lack of a reliable
accuracy measure, for which there is no general analytical analysis.
Other approaches include estimating identical by descent regions
heuristically or by observing each marker separately (Abney, 2008;
Leibon et al., 2008; Thomas et al., 2008), but an exact method for
analyzing dense SNP data in large pedigrees, using the full pedigree
information, is still lacking.

The analysis of dense SNP data in large pedigrees also
necessitates suitable interoperable software tools for manipulating
bulky raw SNP data. While several SNP data manipulation packages
have been developed in recent years (e.g. SNP HiTLink (Fukuda
et al., 2009), easyLINKAGE-Plus (Hoffmann and Lindner, 2005),
IGG (Li et al., 2007), Mega2 (Mukhopadhyay et al., 2005) and
SNPP (Zhao et al., 2005)), none is tightly integrated with a
software package capable of parallelizing linkage analysis tasks
across a multitude of CPUs. Superlink-Online SNP provides a
comprehensive and easy to use solution for both computational and
technical challenges posed by linkage analysis of SNP data in large
pedigrees.

First, the system makes extensive use of modern distributed
computing technologies, which provide both performance and
functional improvements impossible otherwise. The exact linkage
analysis is sped up by employing thousands of CPUs in parallel.

Superlink-Online SNP uses novel methodologies to reduce the
amount of computations required for a single analysis by up to a
hundredfold (Silberstein, 2011) and utilizes a computer grid ten
times larger than we reported before (Silberstein et al., 2006a),
resulting in up to three orders of magnitude faster analyses.
Superlink-Online SNP also parallelizes the approximate linkage
analysis of an arbitrary number of markers and pedigree members
via the MORGAN software. Importantly, the parallel infrastructure
enables us to improve the practical utility of this analysis by
providing a reliable accuracy estimate via the well-established
Gelman-Rubin (GR) statistic (Gelman and Rubin, 1992). Finally,
the system employs DAOOPT, a novel parallel algorithm for
maximum-likelihood haplotyping analysis, yielding two orders of
magnitude faster analysis than previously reported for demanding
pedigrees (Fishelson et al., 2005).

Second, the system presents a simple, intuitive and secure web
interface, fully integrating these powerful data analysis services
with a set of pre- and post- processing tools for preparation and
filtering of SNP data, and presentation of the results. All the tools
are designed to be used in succession, where one may invoke each
tool on the output received from another tool. Notably, the system
records the full history of every data artifact it produces, thus
enabling users to reconstruct all the processing steps which led to a
given result, and easily reproduce the results when necessary. All the
input data as well as the analysis results can be readily downloaded
and entirely removed from the Superlink-Online SNP web site.

By providing an intuitive interface to sophisticated state of the
art tools executed on thousands of CPUs, Superlink-Online SNP
enables the computation of a variety of analyses that were infeasible
before, and helps geneticists exploit the full potential of SNP data
for detecting disease genes.

2 ANALYSIS WORKFLOW
Superlink-Online SNP promotes a workflow oriented genetic
analysis via its set of highly integrated tools. We first describe
a typical analysis workflow, and then demonstrate a real usage
scenario via an example study.

2.1 Workflow Stages
A typical genetic analysis workflow naturally supported in
Superlink-Online SNP is depicted in Figure 1. The system is flexible
and supports an arbitrary combination of the processing stages
described below. However we present a specific workflow based
on the best practices for effective detection of a candidate genomic
region using raw SNP data, in order to emphasize the suitability of
the system for performing a complete end-to-end genetic analysis.

Automatic Filtering randomly chooses up to 25,000 markers
spanning the entire genome and sets the rest aside. This number
of markers enables fast analyses and helps reduce the amount of
linkage disequilibrium (LD), which can lead to misleading results
(Schaid et al., 2002), while still providing sufficient genomic
coverage. The markers are chosen so as to preserve the relative
densities of the original marker maps. Removed markers can later
be restored using the Zooming tool (see below).

Cleaning automatically removes erroneous markers, often
introduced by genotyping errors, and uninformative markers. The
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Fig. 2: A large complex pedigree affected with high LDL levels. Unaffected, affected and individuals with an unknown affection status are
shaded in white, black and gray, respectively. Individuals who have been genotyped are marked with an asterisk. The two individuals marked
with a † symbol refer to the same individual, who is shown twice to simplify the drawing. The results of the Haplotyping analysis are shown
in the two numbers below each individual. Each number corresponds to a different haplotype which originated from one of the founders,
and each individual carries two different haplotypes. Haplotypes 2,3 and 13, which are shaded in gray, are the haplotypes most likely to be
causative.

tool prunes markers with Mendelian errors, markers with extreme
allele frequencies and markers with likelihood (computed using
the standard genetic model but without considering the phenotype)
being higher when not conditioning on their surrounding markers
(Tzemach, 2009). Markers in which the same pair of alleles is
present in all genotyped individuals can also be removed.

Exact Analysis performs multipoint analyses. The system
automatically chooses a computational algorithm most suitable for
a given pedigree size. For smaller pedigrees the system computes
both a parametric multipoint LOD score and the non-parametric
linkage scores Spairs and Sall (Kruglyak et al., 1996; Whittemore
and Halpern, 1994), using all markers jointly via the Lander-Green
algorithm. If, however, the pedigree is too large, the number of
markers in the multipoint analysis can be adjusted by defining
the size of the analysis window. The system then automatically
generates several multipoint runs by moving the analysis window
over the entire set of markers and computes parametric multipoint
LOD scores via Superlink-Online (Silberstein et al., 2006a).

Approximate Analysis approximates parametric LOD scores
via MCMC, using MORGAN. The approximate analysis allows
for multipoint analysis using larger windows that are infeasible to
perform via exact analysis. An accuracy estimate is provided via the
GR score of the analysis. We provide more details about MORGAN
and the statistical aspects of the GR score in Section 3.2.

Zooming, Manual Filtering and Clustering enable users to
focus on specific regions of interest which they wish to analyze more
thoroughly. The Zooming tool creates a window of all the markers
contained in a specific region, including the ones filtered out by
the Automatic Filtering tool. The Manual Filtering tool randomly
filters markers out of a specific region while controlling the average
distance between adjacent markers. These tools can be used in
conjunction to obtain a set of equidistant markers encompassing
a specific region, which can help reduce LD (Evans and Cardon,
2004). Finally, the Clustering tool merges groups of SNP markers
in close proximity into one multi-allelic marker (Tzemach, 2009),

which can enable exact analysis of large genomic regions that are
infeasible by using separate markers, as well as help eliminate LD
(Abecasis and Wigginton, 2005).

Haplotyping computes a maximum-likelihood haplotype confi-
guration that maximizes the probability of the given genotype data,
taking into account intermarker recombination fractions. This serves
to determine if a disease-associated haplotype segregating affected
and unaffected individuals is found in a candidate region. More
details are provided in Section 3.3.

Superlink-Online SNP also includes several services not shown
in Figure 1. One service is a pedigree drawing tool, which uses the
packages Haplopainter (Thiele and Nürnberg, 2005) and Madeline
2.0 (Trager et al., 2007) to provide two different drawings for each
pedigree. Another service is a mode of inheritance (MOI) estimation
tool, which computes the likelihood of the phenotypic data alone
under several different values of the penetrance and disease allele
frequency parameters, while ignoring the markers data, in order to
estimate the most likely MOI. This tool considers models typical
for Mendelian traits (i.e., dominant and recessive models with
fairly high penetrances and fairly low phenocopy rates), but the
system allows one to specify arbitrary models when performing
subsequent analyses. The system also includes a Data Browser
tool that graphically shows homozygous regions shared by different
individuals, which is useful for analyzing recessive traits. Superlink-
Online SNP accepts input files in FASTLINK format, as well as
an input format suitable for SNP data and a web-based input form.
The system assumes that each input file corresponds to a different,
unlinked, genomic region. Users can thus perform a genome-
wide analysis by uploading several different input files, each one
corresponding to a different chromosome or genomic region, and
analyzing them all simultaneously. More details are available at the
system website.
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2.2 An Example Study
We illustrate a typical analysis workflow through an example study
of a complex Arab pedigree from the North of Israel with several
individuals affected with metabolic syndrome (Alberti et al., 2006)
and Familial Hypercholesterolemia, as shown in Figure 2. This
pedigree is too difficult for analysis with programs using the Lander-
Green algorithm, such as Merlin and Allegro, due to its large size
and high degree of consanguinity.

We tested for linkage between a genomic region and the LDL
cholesterol levels. Initial analysis was done according to the
known criteria, where individuals were marked as affected if their
total cholesterol level exceeded 200 mg% or the LDL-cholesterol
exceeded 130 mg%. Second level of analysis was made with strict
arbitrary definition, where individuals were marked as affected if
their LDL-cholesterol levels exceeded 300 mg% (before treatment
was instituted) or above 200 mg% (while medication is undertaken
on a daily basis). The clinical status of individuals whose LDL level
has not been measured was marked as unknown. The individuals
marked with an asterisk have been genotyped using the CytoSNP
300K arrays (HumanCytoSNP-12 v2.1, lllumina lnc.) panel.

In the following section, we omit the precise linkage location
since this study is still in progress. Nevertheless, the example
study demonstrates well the system power and capabilities. The
exons of three genes (LDLR (OMIM 606945), APOB (OMIM
107730) and PCSK9 (OMIM 607786)), known to be involved in
familial hypercholesterolemia, were sequenced and no mutations
were detected.

Automatic Filtering. The input files contained the readings
of 298,199 SNPs. The Automatic Filtering tool randomly chose
25,000 SNPs out of those, while preserving the relative genomewide
density.

Cleaning. The Cleaning tool removed 8,299 SNPs which were
uninformative, and an additional 481 SNPs which contained
Mendelian errors or were unlikely given their surrounding SNPs,
leaving 16,220 markers for the initial analysis.

Exact Analysis. We first used the MOI estimation tool to choose
the disease allele prevalence f and the penetrance level p to use
in the analysis. This tool showed that the studied trait is likely
to follow a dominant MOI, and that that the likelihood increases
monotonically with f and p in the range of values examined
(0.001≤f≤0.45, 0.5≤p≤1), indicating that the trait is likely to
follow a highly prevalent, highly penetrant dominant MOI in this
pedigree. This is consistent with the fact that a large proportion
of the children in each nuclear family is affected. We chose the
parameter values f=0.1, p=0.9 to account for the fact that the
studied trait is complex and is thus not likely to have extreme
disease allele frequency or penetrance levels. We next performed
exact genomewide linkage analysis using these parameters. Due
to the pedigree complexity, the largest feasible window size for a
genomewide analysis is three (four-point analysis). The analysis
revealed a 5cM long region spanning 30 markers with LOD scores
≥2 on one of the chromosomes, indicating suggestive linkage.

Approximate Analysis. We began the Approximate Analysis
stage with an accuracy evaluation, conducted by repeating the
same computations carried out in the Exact Analysis stage in the
candidate region. We performed an approximate four-point analysis
with exponentially increasing numbers of MCMC iterations, using

Table 1. The approximate Root Mean Square Error (RMSE∗) of the
LOD scores obtained using approximate analysis with 3-marker windows
(compared with the exact analysis), the Root Mean Square Error (RMSE) of
the LOD Scores using other window sizes (compared with those obtained in
an analysis with 100×213 iterations) and the average GR Scores obtained
in these analyses.

window #MCMC Iterations (×100)

size 21 24 27 210 213

3 RMSE∗ 1.32 1.06 0.98 0.97 0.96
Avg. GR 3.39 2.36 1.87 1.62 1.53

10 RMSE 0.4 0.27 0.15 0.06 0
Avg. GR 7.49 4.78 3.92 2.8 1.54

25 RMSE 0.44 0.47 0.13 0.06 0
Avg. GR 97.41 156.92 20.01 3.2 5.86

50 RMSE 0.18 0.17 0.03 0.18 0
Avg. GR 7.32 7.34 3.66 167.4 7.4

100 RMSE 0.53 0.09 0.05 0.02 0
Avg. GR 30.7 2.27 3.5 3.34 1.77

the default parameter values specified in MORGAN. A LOD score
and a GR score were reported for each tested locus in each analysis.
We compared the obtained LOD scores with those obtained in the
exact analysis. Direct comparison was not possible, since the exact
analysis places the tested loci on the markers, while the approximate
analysis places the tested loci halfway between every two adjacent
markers due to restrictions of the MCMC algorithm. Instead, we
performed an approximate comparison by computing the average
LOD score of every two adjacent markers obtained in the exact
analysis with the LOD score obtained between these two markers
in the approximate analysis. Table 1 shows the approximate root
mean square error (RMSE∗) of the LOD scores (compared with the
exact analysis) and the average GR score obtained for all tested loci.
As expected, the accuracy of the results increases with the number
of MCMC iterations and the GR scores become closer to one,
indicating convergence. Note that the RMSE∗ statistic overestimates
the error term due to the approximation.

Zooming and Filtering. We used the Zooming and Filtering tools
to obtain a window of 100 markers 0.1 cM apart encompassing the
candidate region. We performed approximate analysis in this region
using windows of 10, 25, 50 and 100 markers with exponentially
increasing numbers of iterations. Since exact analysis with such
window sizes is infeasible, we estimated the accuracy by comparing
the obtained LOD scores of each analysis to those obtained in
the analysis with the largest number of iterations we performed
(100×213). The results, as well as the average GR score reported
for each analysis, are shown in Table 1. Table 1 demonstrates
that the RMSE tends to decrease with the number of iterations,
though on rare occasions one or more of the concurrent analyses
performed may fail to converge, causing the RMSE to increase.
Table 1 also shows that the average GR score is a conservative
measure of convergence; In our analyses, average GR scores
≤3.5 always indicate that the RMSE is smaller than 0.1, but
higher GR scores do not necessarily indicate the converse. This
demonstrates that the GR score is sensitive to small differences in
the results of the concurrent MCMC runs. Thus, small GR scores
indicate that the results obtained in an approximate analysis are
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(a) 10 markers per window.
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(b) 25 markers per window.
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(c) 50 markers per window.
 

-3 
-2 
-1 
0 
1 
2 
3 
4 

0 2 4 6 8 10 12 14 16 

LO
D

 S
co

re
 

Markers Position (cM) 

(d) 100 markers (single window).

Fig. 3: LOD scores of candidate region using approximate analyses
with various window sizes (high resolution versions of graphs
automatically produced by the system).

reproducible. We therefore recommend performing approximate
analysis by exponentially increasing the number of iterations until
an average GR score ≤3.5 is obtained. The LOD scores obtained
using the various analyses performed are shown in Figure 3, which
demonstrates that analyses using larger windows are less fluctuant
because each window is more informative, thus better pinpointing
the disease gene location.

Haplotyping. We concluded the analysis by using the
Haplotyping tool to determine if a disease-associated haplotype
can be found in the candidate region. We ran several seven-point
Haplotyping analyses encompassing the candidate region. For these
analyses, we used markers with a high degree of heterozygosity
among the genotyped individuals, since such markers are more
informative and enable faster computations. Such markers can be
readily found using the Data Browser tool. The analysis results
are shown in Figure 2. Surprisingly, the analyses revealed that
three different haplotypes, originating from three different founders,
segregate in all affected individuals but in only one unaffected
individual in the candidate region. A possible explanation is that
two of the haplotypes originate from a common ancestor. This
hypothesis is supported by the fact that haplotypes 2 and 3 share
a 0.2cM long common sequence. When analyzing only this shared
region, a LOD score of 3.48 is obtained (versus a maximum
LOD score of 3.07 obtained in the 100-markers analysis shown in
Figure 3). The expected maximum LOD score for this pedigree,
obtained when only one disease-associated locus segregates in all
affected individuals, is 4.18 (evaluated by simulating 100 genotypes
conditional on the trait using the MORGAN tool markerdrop (Basu
et al., 2008)). This is consistent with the fact that the three
segregating haplotypes are less likely than a single segregating
haplotype. Note that the results of the Haplotyping tool do
not directly correspond to the computed LOD score, since the
Haplotyping tool finds the most likely inheritance vector while
the LOD score computation averages over all possible inheritance
vectors. The two computations are equivalent only when all meioses

are fully informative, which rarely happens when analyzing SNP
data with limited window sizes.

3 SYSTEM AND METHODS

3.1 System Infrastructure
Superlink-Online SNP speeds up linkage analysis computations by utilizing
the aggregate power of thousands of CPUs scattered in computing clusters
and home desktops around the world. The system automatically parallelizes
the computations by splitting the problem into many independent subtasks,
invokes these subtasks in parallel on many remote computers, and finally
combines all the partial results to be presented to the user as if they were
executed on a single machine.

By design, Superlink-Online SNP does not rely on expensive
supercomputing resources for operation. Instead, it leverages non-dedicated
computers which are not allocated to be exclusively used by the system, but
permit execution of tasks occasionally, only when allowed to do so by their
owners.

Providing a dependable and fast service over such a best-effort distributed
execution environment poses a number of unique challenges. Below we
list the main such challenges and briefly describe the key techniques
instrumental to the successful operation of the Superlink-Online SNP
system.
Parallelization. The original computing task has to be split into multiple
subtasks while satisfying a number of constraints.

Independence. The subtasks must be independent to ensure steady
progress of the computations despite subtasks failures. Such failures are in
fact quite common in reality. For example, they occur when a computer
owner requests to regain the control of her machine. The running task
must be then immediately and unconditionally vacated from that machine.
Independence between subtasks enables them to be restarted on a different
CPU without affecting the execution of other concurrently running subtasks.

Number of subtasks and their size. The number of subtasks generated for
each linkage analysis task determines the maximum performance increase
for that task versus its execution on a single CPU, and thus has to be
maximized. However as the number of subtasks increases, the amount of
computations per subtask shrinks, and the benefits of adding more CPUs
become outweighed by the overheads due to their execution in a distributed
environment.

The parallelization in Superlink-Online SNP is based on the algorithm
introduced and implemented in the previous generation of the system,
Superlink-Online (Silberstein et al., 2006a,b). The algorithm splits the
problem by assigning values to some variables in the underlying statistical
model. The subtasks are recursively split further, until their estimated
running time is within the system-dictated boundaries. The created subtasks
are independent, and the final result is obtained by computing a simple sum
of all partial results.

While designing Superlink-Online SNP we analyzed the performance
of 15,000 real linkage analysis tasks previously submitted to Superlink-
Online during one year of operation. We found that although the algorithm
often allowed for scalable parallelization of real inputs, it was notoriously
inefficient in many others, often misclassifying input tasks as infeasible.
The reason for this inefficiency was hidden in the false assumption that
the running times of all the subtasks were identical. In reality, in addition
to the subtasks which were consistent with the estimate, there were a
large number of very short subtasks, regardless of what was predicted
by the algorithm. These short subtasks often constituted over 95% of all
the generated subtasks, and caused excessive network load and system
slowdown.

We devised a pruning algorithm for fast detection of short subtasks,
which is used to analyze all the generated subtasks prior to the full
parallel execution. As a result, the short subtasks are eliminated and their
contribution to the final result is quickly computed without actually running
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Fig. 4: Superlink-Online SNP production deployment. Each cloud
represents a single independently managed system with hundreds to
tens of thousands of CPUs.

each subtask. The pruning algorithm itself is executed in parallel as well.
More technical details can be found in (Silberstein, 2011).
Execution environment. Our goal to reach out as many CPUs as possible
is realized through a system, called GridBot (Silberstein et al., 2009),
which is capable of acquiring and efficiently employing a variety of
uncoordinated computing resources. These resources range from university
computing clusters and large-scale computational grids and clouds, to
desktop computers scattered all over the world.

The current deployment of the Superlink-Online SNP system is depicted
in Figure 4. Over the period of one year the system employed about 50,000
computers in 130 countries, providing the total computing power equivalent
to about 1,000 CPU years.

The GridBot system was designed with two primary goals: to dynamically
establish a centrally managed cluster of CPUs in response to computing
demand of linkage analysis tasks, and to provide mechanisms for prompt
and correct execution of multiple parallel tasks on these CPUs.

To achieve the first goal the system dynamically creates an overlay of
execution clients across the diverse computing environments connected to
the GridBot system. These clients, invoked on remote CPUs instead of
actual subtasks, connect back to the central GridBot server to fetch the
subtasks or report results. The system dynamically provisions the number
of the CPUs from each connected environment, by considering the amount
of subtasks in its queue, as well as the availability and local policies of
the remote computers. This technique enables us to effectively lease CPUs
from many different computing systems, simplifying their coordination and
management. A CPU lease ends when GridBot completes its computations,
or when the CPU owner requires it back.

Once the leased CPUs become available GridBot invokes the subtasks
according to the following execution policy:

1. Less demanding linkage analysis requests are prioritized on more
reliable CPUs thereby reducing the chance of a subtask failure, and
resulting in faster completion. Simpler runs are also prioritized over
more demanding ones to allow interactive response.

2. Few subtasks which belong to a task toward its completion are invoked
more than once on different CPUs. Then, the result of the first task
is accepted. This technique, called replication, is known to facilitate
prompt completion of large parallel runs, which would otherwise be
significantly delayed by failures of the last few remaining subtasks.

GridBot dynamically learns the reliability of the CPUs participating in the
computation by counting the number of subtasks successfully completed by
each CPU. Similarly, other system characteristics are constantly gathered
and analyzed, allowing for automatic adjustment of the execution behavior

to the rapid changes in the system conditions. We refer the interested reader
to (Silberstein et al., 2009) for more details.

3.2 Approximate Analysis Via MCMC
Markov Chain-Monte Carlo (MCMC) is a class of algorithms for sampling
from a distribution via a Markov chain whose stationary distribution is the
target distribution (Andrieu et al., 2003). The main drawback of MCMC
methods is the difficulty in determining the chain convergence rate, for which
there is no general analytical analysis. A variety of statistical measures for
convergence have been proposed, among which is the Gelman-Rubin (GR)
score. This statistic compares the sample variance of a certain quantity of
interest between different MCMC chains with the average within-chains
sample variance. The closer the GR score is to one, the closer the MCMC
chains are to convergence. The GR scores calculation can be briefly
described as follows. Denote m as the number of MCMC chains invoked
and n as the number of MCMC iterations. Further denoteB/n as the sample
variance of the quantity of interest between different MCMC chains and W
as the average within-chain sample variance. The GR score is defined as√
V̂ /W , where V̂ is given by V̂ = (n− 1) /n ·W + B/n + B/ (mn)

(Superlink-Online SNP actually uses a slightly more refined measure,
described in (Gelman and Rubin, 1992) and further refined in (Brooks
and Gelman, 1998)). Assuming that the starting points of the different
MCMC chains are over-dispersed compared to the target distribution, V̂
is an overestimate of the true pooled variance and thus the GR score is an
overestimate of the sample variance ratio.

MORGAN is a collection of software, under the PANGAEA (pedigree
analysis for genetics and epidemiological attributes) umbrella. These
programs implement a number of methods for the analysis of data observed
on members of a pedigree structure. lm linkage is a program of the
MORGAN package, which estimates multi point LOD scores via Monte
Carlo sampling of latent autozygosity states conditional on multilocus
marker data. Superlink-Online SNP performs approximate genetic linkage
analysis via this program. Each analysis is repeated five times in order
to refine the obtained LOD score and compute a GR score, and the
reported LOD score is the average. Note that the actual MCMC algorithm
is not parallelized, but several different MCMC runs of different genomic
regions can run on several CPUs simultaneously, speeding up the analysis.
Additional details about the MORGAN package are available elsewhere
(Tong and Thompson, 2008).

3.3 Parallel Haplotyping Algorithm
Superlink-Online SNP uses the DAOOPT solver (Distributed AND/OR
Optimization (Otten and Dechter, 2012a)) for efficient parallel, exact
maximum-likelihood haplotyping. Initially the preprocessed pedigree is
converted into a Bayesian network and a number of domain-specific
optimizations are applied (Fishelson et al., 2005; Allen and Darwiche, 2008).
The subsequent execution of DAOOPT is based on sequential AND/OR
branch-and-bound (Marinescu and Dechter, 2009a,b), a state-of-the-art
algorithm that explores the AND/OR context minimal search space of the
pedigree-based Bayesian network in a depth-first manner by exploiting the
following key methods:

• decomposition of independent subproblems, enabling exponential time
savings;

• full caching of intermediate solutions, further reducing computation
time at the expense of additional memory usage;

• mini-bucket heuristics whose strength, controlled by an i-bound, is
dynamically adjusted based on the amount of memory available. The
required memory is exponential in the i-bound (Kask and Dechter,
2001).

This general framework has been highly competitive in recent algorithmic
competitions; for instance, it won first places in all three optimization
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tracks of the PASCAL 2011 Probabilistic Inference Challenge (results at
http://www.cs.huji.ac.il/project/PASCAL/ ). Furthermore, already in non-
distributed execution, it has proven to be far more efficient than earlier
haplotyping schemes in Superlink-Online.

The distributed implementation of DAOOPT follows the paradigm of
parallel tree search, where a space of partially assigned (conditioned)
subproblems are solved by different CPUs. These subproblems are managed
through a central search scheme (Otten and Dechter, 2012a). The complexity
and number of these subproblems is a central factor that governs the
overall performance; sufficiently many subproblems are required to allow
for efficient parallelization on a large number of parallel resources, but
overhead and structural redundancies dictate that the individual work units
don’t become too small.

The most important task of the distributed algorithm and primary research
challenge is then to maintain efficient load balancing, meaning that the
parallel subproblems have similar solution complexity and computational
resources are thus utilized equally; in particular, no single subproblem
should dominate the overall runtime. In practice, however, this is made
highly difficult by the pruning power of the branch-and-bound algorithm,
which can have vastly diverging impact in different parts of the search space.

We have therefore developed a number of novel schemes that estimate
subproblem size ahead of time based on different subproblem parameters
(Otten et al., 2009; Otten and Dechter, 2010, 2011). The most recent,
most general approach used in Superlink-Online SNP’s parallel haplotyping
component is based on machine learning methods, in particular linear
regression (Otten and Dechter, 2012b). Similar methods have been
successfully applied to propositional logic (SAT) solvers (Xu et al., 2008).
For a parallel subproblem x we model its complexity N(x) as log-linear in
its subproblem features φi(x) through:

N(x) = exp
(∑

i

λi · φi(x)
)
. (1)

The set of features φi(x) utilized by DAOOPT includes:

• upper and lower bounds on the subproblem’s solution, derived from the
probabilities of the Bayesian network by the mini-bucket heuristic and
the search procedure;

• various structural parameters extracted from the underlying subproblem
graph (induced width, search space depth, domain size statistics, etc.),
as built from the pedigree instance.

In an offline step we have compiled a substantial training set of example
subproblems xj , 1 ≤ j ≤ m, of varying sizes and from different
pedigree instances, and recorded their feature values φi(xj) and the
respective solution complexity N(xj). We apply linear regression with
lasso regularization (to avoid overfitting and enhance numerical stability
(Tibshirani, 1996)) on the training set feature values and log complexities, in
order to minimize the regularized mean squared error:

MSE =
1

m

∑
j

(
logN(xj)−

∑
i

λi · φi(xj)
)
+ α

∑
i

|λi|. (2)

This yields a set of weights λi for the general expression (1) above.
The resulting regression model is used by the DAOOPT software in
Superlink-Online SNP’s haplotyping component to predict the complexity
of subproblem instances when deciding how to split the overall problem into
parallel work units in a balanced way.

To evaluate the parallel performance of the haplotyping component,
we conducted experiments on six complex haplotyping problems
(Supplementary Material) using a dedicated cluster of 320 CPUs; these
problems are based on pedigrees with 20 to 25 individuals and take many
hours or even days to solve exactly using just a single processor. The
results for varying degrees of parallelism are presented in Figure 5. We
note that the most complex problems in particular provide very good parallel
speedup (perfect linear speedup cannot be expected due to overhead inherent

(a) Parallel haplotyping run time.

(b) Parallel speedup.

Fig. 5: Parallel haplotyping run time (log scale) on six hard
pedigrees for varying number of CPUs and their corresponding
parallel speedup.

to distributed processing) – the runtime of “pedigree19”, for instance, is
reduced from nearly 1 week (158 hours) to under 40 minutes, by a factor of
almost 250; “pedigree51” goes from over 19 days (461 hours) to 2 hours and
20 minutes. As was to be expected, the simpler problems (taking just a few
hours on a single CPU) are not quite as conducive to parallel speedup since
the inherent parallel overhead has a relatively stronger impact, yet we still
see good parallel performance.

We note that the solution to the maximum-likelihood haplotyping problem
is often not unique, namely there are typically several equally likely
configurations, e.g., because of symmetries like untyped individuals without
children. The current implementation of DAOOPT in Superlink-Online SNP
returns only one of these equally likely solutions. The general problem
of finding the m best solutions is an inherently harder task, yet of much
practical interest. Besides finding all most likely ones it would also yield
the set of second best, third best, etc. haplotype configurations for large
enough values of m, at the expense of increased computational complexity.
Recent improvements have been made to the sequential search algorithms
that DAOOPT is based on to allow finding m best solutions in an efficient
manner (Dechter et al., 2012), but more research and development effort is
required to add this functionality to the distributed scheme.

Similarly, the issue of complexity prediction and load balancing is subject
to ongoing work and we expect that refining the models for subproblem
estimation will allow us to further improve upon the results above.

4 DISCUSSION
We have described the system Superlink-Online SNP which
provides geneticists a suite of genetic analysis utilities and is able to
perform analyses that are infeasible elsewhere. The system provides
tools for both exact and approximate analysis with a reliable
accuracy measure. The system source code is freely available, and
an online version is also available, enabling computations using tens
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of thousands of CPUs. In the online version each user has a private
password protected account and unauthorized access is prevented
to retain data privacy. Users can download their data and delete it
from the system at any time. Users with higher privacy concerns
can download the system source code and install it on their own
clusters.

One line of future work we intend to pursue is better handling of
LD (Schaid et al., 2002). The system currently reduces the amount
of LD by randomly selecting a small subset of the input SNPs while
preserving the relative SNPs density, which prevents two SNPs in
very close proximity from both remaining in the analysis. It has been
shown that LD rarely affects linkage analysis when SNP markers
are separated by ≥0.1 cM (Evans and Cardon, 2004). The system
also provides a manual filtering tool which can also help reduce the
amount of LD. Nevertheless, in the future we plan to utilize recently
developed methods (e.g. (Albers and Kappen, 2007; Bellenguez
et al., 2009a; Cho and Dupuis, 2009; Kurbasic and Hssjer, 2008;
Rinaldo et al., 2005; Webb et al., 2005; Zhang et al., 2009)) to better
handle this phenomenon.

The rapidly growing availability of high throughput sequencing
data presents new challenges, as well as new opportunities,
for genetic linkage analysis (Wijsman, 2012). Although linkage
analysis of sequencing data has already been successfully conducted
(Smith et al., 2011), our initial experiments have shown that
analysis of such data is more sensitive to genotyping errors, as
well as to biological phenomena that violate the assumptions
of genetic linkage analysis such as insertions, deletions and
single base mutations (data not shown). Our future plans include
developing solutions to streamline the genetic linkage analysis of
next generation sequencing data, and help geneticists exploit the
potential of these promising new technologies.
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