
1

Anytime AND/OR Depth-first Search for
Combinatorial Optimization

Lars Otten∗ and Rina Dechter
Department of Computer Science,
University of California, Irvine, U.S.A.
{lotten,dechter}@ics.uci.edu

One popular and efficient scheme for solving combinato-
rial optimization problems over graphical modelsexactly
is depth-first Branch and Bound. However, when the al-
gorithm exploits problem decomposition using AND/OR
search spaces, its anytime behavior breaks down. This article
1) analyzes and demonstrates this inherent conflict between
effective exploitation of problem decomposition (through
AND/OR search spaces) and the anytime behavior of depth-
first search (DFS), 2) presents a new search scheme to ad-
dress this issue while maintaining desirable DFS memory
properties, and 3) analyzes and demonstrates its effective-
ness through comprehensive empirical evaluation. Our work
is applicable toanyproblem that can be cast as search over
an AND/OR search space.

Keywords: combinatorial optimization, graphical models,
Bayesian and constraint networks, anytime performance,
AND/OR search, problem decomposition.

1. Introduction

Max-product problems over graphical models, gen-
erally known as MPE (most probable explanation) or
MAP (maximum a posteriori) inference, have many
applications with practical significance, ranging from
computational biology and genetics to scheduling tasks
and coding networks. One established and efficient
class of algorithms for solving these problems exactly
is depth-first Branch and Bound over AND/OR search
spaces. Developed in the past decade within the prob-
abilistic reasoning and constraint communities, these
methods are effective because they use sophisticated
lower bound schemes such as soft arc-consistency
[15] or the mini-bucket heuristic [6,16], because they

* Corresponding author: 4099 Donald Bren Hall, Dept. of Com-
puter Science, University of California, Irvine, CA 92697,U.S.A.
E-mail: lotten@ics.uci.edu, Fax: +1-949-824-4056.

avoid redundant computation using caching schemes,
and most significantly, because they take advantage
of problem decomposition by exploring an AND/OR
search space [19] or an equivalent representation. The
efficiency of these algorithms was established in sev-
eral evaluations, including recent UAI competitions
[7], and their properties when used for exact computa-
tion are well documented [10,16,17].

A principled alternative is presented by best-first
schemes, but while provably superior in terms of num-
ber of node expansions, these often fail when a prob-
lem has large induced width due to the generally ex-
ponential size of the algorithm’s OPEN list; moreover,
they can only provide a solution at termination [17].
Depth-first search is therefore often preferred because
of its flexibility in working with bounded memory –
the OPEN list of nodes grows linearly – and because of
its anytime behavior. Namely, when finding a feasible
solution is easy but an optimal one is hard, depth-first
Branch and Bound generates solutions that get better
and better over time, until it eventually discovers an
optimal one. Thus it can function also as an approx-
imation scheme for otherwise infeasible problems or
when time is limited [24].

Indeed, in the 2010 UAI Approximate Inference
Challenge participating Branch and Bound solvers per-
formed competitively with respect to approximation
(placing 1st and 3rd in some categories). But we also
observed an inability to produce even a single solution
on some instances, especially when the time bound
was small. Thus motivated, this article will demon-
strate that the issue is rooted in the underlying AND/
OR search space.

These search spaces were originally introduced to
graphical models to facilitate problem decomposi-
tion during search (e.g. [5]) and can be explored by
any search strategy. When traversed depth-first, how-
ever, all but one decomposed subproblem will befully
solvedbefore a single overall solution can be com-
posed, voiding the algorithm’s anytime characteristics.

We observe that under certain conditions, namely if
only one of the decomposed subproblems is “hard”,

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved



2 L. Otten and R. Dechter / Anytime AND/OR Depth-first Search for Combinatorial Optimization

this adverse effect can be mitigated by processing sub-
problems in a suitable order, which we demonstrate
empirically.

This article’s main contribution is a new Branch
and Bound scheme over AND/OR search spaces,
calledBreadth-Rotating AND/OR Branch and Bound
(BRAOBB)that addresses the anytime issue in a princi-
pled way, while maintaining the favorable complexity
guarantees of depth-first search. The algorithm com-
bines depth-first and breadth-first exploration by peri-
odically rotating over the different subproblems, each
of which is processed depth-first.

Experimental evaluation is conducted on a variety
of benchmark domains, including haplotype computa-
tion problems in genetic pedigrees, random grid net-
works, and protein side-chain prediction instances. We
compare BRAOBB against one of the best variants of
AND/OR branch and Bound search, AOBB [16], and
against an “ad hoc” fix that we suggest – the latter al-
gorithm relies on a heuristic to quickly find a solu-
tion to each subproblem before reverting to depth-first
search. We furthermore compare against a state-of-the-
art stochastic local search solver, which is specifically
targeted at anytime performance but cannot provide
any proof of optimality [9].

The empirical results demonstrate superior anytime
behavior of BRAOBB, especially over problematic
cases where standard AOBB and its ad hoc fix fail,
including several very hard instances from the 2010
UAI Approximate Inference Challenge that were made
available and three weighted constraint satisfaction
problem instances that are known to be very complex.
We also show how combining local search and ex-
haustive AND/OR search lets us enjoy the benefits of
both approaches. Notably, a solver based on this con-
cept recently won all three categories (20 seconds, 20
minutes, and 1 hour) in the MPE track of the PAS-
CAL 2011 Inference Challenge [8], the successor to
the 2010 UAI Challenge.

Related Work
The work presented here is focused on optimization

problems defined over graphical models. As such our
results are also relevant for related schemes like recur-
sive conditioning [4] and value elimination [2] in the
area of probabilistic reasoning, or BTD (Backtracking
Tree Decomposition [10]) in constraint optimization.
In fact, the presented concepts carry over to combina-
torial AND/OR search spaces in general.

Second, we note Interleaved Depth-First Search
[18], which uses a similar idea of interleaved process-
ing of different branches to mitigate mistakes with re-

spect to successor ordering. However, it was only pre-
sented in a general, non-optimization OR search con-
text for constraint satisfaction problems.

Connections can also be made to recent contribu-
tions in the area of distributed, multi-agent constraint
optimization, where algorithms like NCBB [3] and
BnB-ADOPT [23] organize agents along a pseudo
tree-like structure, thereby obtaining solutions to inde-
pendent subproblems in parallel.

Finally, most directly related to the objective of this
work is the concept of local search, which can be seen
as specifically targeting anytime performance. How-
ever, it differs from AOBB and the proposed BRAOBB
in that it cannot prove optimality of the solutions it re-
turns. We include the state-of-the-art stochastic local
search solver GLS+ in our empirical evaluation [9].

Paper Outline
The remainder of this article is structured as follows:

Section 2 introduces the underlying concepts of AND/
OR Branch and Bound. Section 3 identifies the cen-
tral conflict between problem decomposition and any-
time performance and provides empirical results where
the latter is compromised. The new algorithm Breadth-
Rotating AOBB is proposed in Section 4 and its theo-
retical properties are analyzed. Section 5 presents ex-
haustive experimental results and analysis using a wide
range of example problems as well as summary statis-
tics across more than 500 instances. Section 6 con-
cludes.

2. Background

We consider a MPE (most probable explanation,
sometimes also called MAP, maximum a posteriori as-
signment) problem over a graphical model, defined by

(a) (b) (c)

Fig. 1. (a) Example primal graph of a graphical model with six vari-
ables, (b) its induced graph along orderingd = A,B,C,D,E, F ,
and (c) a corresponding pseudo tree.



L. Otten and R. Dechter / Anytime AND/OR Depth-first Search forCombinatorial Optimization 3

(a) (b)

Fig. 2. (a) AND/OR search tree and (b) context-minimal AND/OR search graph corresponding to the pseudo tree in Figure 1(c).

the tuple(X,F,D,max,
∏
) .F ={f1, . . . , fr} is a set

of functions over variablesX = {X1, . . . , Xn} with
discrete domainsD={D1, . . . , Dn} , we aim to com-
putemaxX

∏
i fi , the probability of the most likely

assignment. Another closely related combinatorial op-
timization problem is theweighted constraint prob-
lem, where we aim to minimize the sum of all costs,
i.e. computeminX

∑
i fi [21]. These tasks have many

practical applications but are known to be NP-hard.
The set of function scopes implies a primal graph

and, given an ordering of the variables, aninduced
graph (where, from last to first, each node’s earlier
neighbors are connected) with a certaininduced width,
the maximum number of earlier neighbors over all
nodes [20,12].

EXAMPLE 1. Figure 1(a) depicts the (primal) graph
of an example graphical model with six variables,A

throughF . The induced graph for the example problem
along orderingd = A,B,C,D,E, F is depicted in
Figure 1(b), with two new induced edges,(B,C) and
(B,E). Its induced width is 2.

Different orderings will vary in their induced width;
finding an ordering of minimal induced width is known
to be equally NP-hard. In practice heuristics likemin-
fill or mindegreehave proven to produce reasonable ap-
proximations [14,13].

The concept ofAND/OR search spaceshas recently
been introduced to graphical models to better capture
the structure of the underlying graph during search [5].
The search space is defined using apseudo treeof the
graph, which captures problem decomposition as fol-
lows:

DEFINITION 1. A pseudo treeof an undirected graph
G = (X,E) is a directed, rooted treeT = (X,E′) ,
such that every arc ofG not included inE′ is a back-
arc inT , namely it connects a node inT to an ancestor
in T . The arcs inE′ may not all be included inE.

EXAMPLE 2. A pseudo tree for the example in Fig-
ure 1(a) is shown in Figure 1(c), corresponding to
the induced graph in Figure 1(b) along orderingd =
A,B,C,D,E, F . Note howB has two children, cap-
turing the fact that the two subproblems overC,D and
E,F , respectively, are independent onceA andB have
been instantiated.

2.1. AND/OR Search Trees

Given a graphical model instance with variables
X and functionsF , its primal graph(X,E) , and a
pseudo treeT , the associatedAND/OR search tree
consists of alternating levels of OR and AND nodes
[5]. Its structure is based on the underlying pseudo tree
T : the root of the AND/OR search tree is anOR node
labeled with the root ofT . The children of an OR node
〈Xi〉 areAND nodeslabeled with assignments〈Xi, xj〉
that are consistent with the assignments along the path
from the root; the children of an AND node〈Xi, xj〉
are OR nodes labeled with the children ofXi in T ,
representing conditionally independent subproblems.

EXAMPLE 3. Figure 2(a) shows the AND/OR search
tree resulting from the primal graph in Figure 1(a)
when guided by the pseudo tree in Figure 1(c). Note
that the AND nodes forB have two children each, rep-
resenting independent subtrees rooted atC andE, re-
spectively, thereby capturing problem decomposition.

In general, given a pseudo treeT of heighth , the
size of the AND/OR search tree based onT is O(n ·
kh) , wherek bounds the domain size of variables [5].

2.2. AND/OR Search Graphs

Identical subproblems, identified by their context
(the partial instantiation that separates the subproblem
from the rest of the network), can be merged, yield-



4 L. Otten and R. Dechter / Anytime AND/OR Depth-first Search for Combinatorial Optimization

ing anAND/OR search graph[5]. Merging all context-
mergeable nodes yields thecontext-minimalAND/OR
search graph. It was shown that the context-minimal
AND/OR search graph has sizeO(n·kw

∗

) , wherew∗ is
the induced width of the problem graph along a depth-
first traversal ofT [5].

EXAMPLE 4. Figure 2(b) displays the context-minimal
AND/OR graph obtained when applying full caching
to the AND/OR search tree in Figure 2(a). In particu-
lar, the OR nodes forD (with context{B,C}) andF
(context{B,E}) have two edges converging from the
AND level above them, signifying caching (namely, the
assignment ofA does not matter).

Given an AND/OR search spaceST , asolution sub-
treeSolST

is a tree such that (1) it contains the root of
ST ; (2) if a nonterminal AND noden∈ST is inSolST

then all its children are inSolST
; (3) if a nonterminal

OR noden ∈ ST is in SolST
then exactly one of its

children is inSolST
.

2.3. Weighted AND/OR Search Spaces

Given an AND/OR search graph, each edge from an
OR nodeXi to an AND nodexi can be annotated by
weightsderived from the set of cost functionsF in the
graphical model: the weightl(Xi, xi) is the combina-
tion of all cost functions whose scope includesXi and
is fully assigned along the path from the root toxi ,
evaluated at the values along this path. Furthermore,
each noden in the AND/OR search graph can be as-
sociated with avaluev(n), capturing the optimal solu-
tion cost to the subproblem rooted atn , subject to the
current variable instantiation along the path from the
root ton . v(n) can be computed recursively using the
values ofn’s successors [5].

2.4. AND/OR Branch and Bound

AND/OR Branch and Bound (AOBB) is a state-
of-the-art algorithm for solving optimization problems
such as max-product over graphical models [16,17].
Assuming a maximization query, AOBB traverses the
weighted context-minimal AND/OR graph in a depth-
first manner while keeping track of the current lower
bound on the maximal solution cost. A noden will be
pruned if this lower bound exceeds a heuristic upper
bound on the solution to the subproblem belown (cf.
Section 2.5). The algorithm interleaves forward node
expansion with a backward cost revision or propaga-
tion step that updates node values (capturing the cur-

Algorithm 1 AND/OR Branch and Bound (AOBB)

Given: Graphical model(X,F,D,max,
∏

) and pseudo
treeT with rootXo

Output: cost of optimal solution
1: OPEN← {〈X0〉}
2: while OPEN 6= ∅
3: n← top(OPEN) // top node from stack, depth-first
4: if checkpruning(n) = success
5: prune(n) // perform pruning
6: else if cachelookup(n) = success
7: readcache(n) // retrieve cached value
8: else if n = 〈Xi〉 is OR node
9: for xj ∈ Di

10: create AND child〈Xi, xj〉
11: add〈Xi, xj〉 to top ofOPEN
12: else if n = 〈Xi, xj〉 is AND node
13: for Yr ∈ childrenT (Xi)
14: generate OR node〈Yr〉
15: add〈Yr〉 to top ofOPEN
16: if children(n)= ∅ // n is leaf
17: propagate(n) // upwards in search space
18: return value(〈X0〉) // root node has optimal solution

rent best solution to the subproblem rooted at each
node), until search terminates and the optimal solution
has been found [16].

Algorithm 1 shows pseudo code for AOBB: Start-
ing with just the root node〈X0〉 on the stack, the al-
gorithm iteratively takes the top noden from the stack
(line 3). Lines 4–7 try to prune the subproblem below
n (by comparing a heuristic estimate ofn against the
current lower bound) and check the cache to see if the
subproblem belown has previously been solved (de-
tails in [16]). If neither of these is successful, the algo-
rithm generates the children ofn (if any) and pushes
them back onto the stack (8–15). Ifn is a terminal node
in the search space (it was pruned, its solution retrieved
from cache, or the correspondingXi is a leaf inT ) its
value is propagated upwards in the search space, to-
wards the root node (16–17). When the stack eventu-
ally becomes empty, the value of the root node〈X0〉 is
returned as the solution to the problem (18).

We will use AOBB to denote the algorithm above
in its specific graphical models context as well as a
generic name for any depth-first Branch and Bound
scheme over an AND/OR search space.

2.5. Mini-Bucket Heuristics

The heuristich(n) that we use in our experiments
is the mini-bucket heuristic. It is based on mini-bucket
elimination, which is an approximate variant of vari-



L. Otten and R. Dechter / Anytime AND/OR Depth-first Search forCombinatorial Optimization 5

able elimination and computes approximations to rea-
soning problems over graphical models [6]. A control
parameteri allows a trade-off between accuracy of the
heuristic and its time and space requirements – higher
values ofi yield a more accurate heuristic but take
more time and space to compute. It was shown that the
intermediate functions generated by the mini-bucket
algorithm MBE(i) can be used to derive a heuristic
function that isadmissible, namely in a maximization
context it overestimates the optimal cost solution to a
subproblem in the AND/OR search graph [11].

3. Anytime Behavior versus Problem
Decomposition in AND/OR Search

As a depth-first branch and bound scheme one
would expect AOBB to quickly produce a non-optimal
solution and then gradually improve upon it, maintain-
ing the current best one throughout the search. How-
ever this ability is compromised in the context of AND/
OR search.

Specifically, in AND/OR search spaces depth-first
traversal of a set of independent subproblems will
solve to completion all but one subproblem before the
last one is even considered. As a consequence, the first
generated overall non-optimal solution contains con-
ditionally optimal solutions to all subproblems but the
last one. Furthermore, depending on the problem struc-
ture and the complexity of the independent subprob-
lems, the time to return even this first non-optimal
overall solution can be significant, practically negating
the anytime behavior of depth-first search (DFS).

3.1. Subproblem Ordering

In certain cases, the above suggests a simple rem-
edy: if decomposition yields only one large subprob-
lem and several smaller ones, the latter can be solved
depth-first in relatively little time, to be then com-
bined with the incrementally improving solutions of
the larger subproblem. Thus for anytime behavior an
AOBB algorithm would need to process independent
subproblems from “easy” to “hard”.

To demonstrate the practical impact of subproblem
orderings, we use a simple heuristic that takes the
induced width as a measure of subproblem hardness
(motivated by its exponential role in the asymptotic
complexity), i.e. we modify AOBB such that subprob-
lems with smaller induced width will be processed first

100 101 102 103 104

Search time in seconds

−140.5

−140.0

−139.5

−139.0

−138.5

−138.0

−137.5

−137.0

Lo
g(

pr
ob

ab
ili

ty
)

pedigree30x1, i10 (n=1289 k=5 w=21 h=108)

increasing
decreasing

100 101 102 103 104

Search time in seconds

−134

−132

−130

−128

−126

−124

−122

−120

Lo
g(

pr
ob

ab
ili

ty
)

pedigree41x1, i7 (n=1062 k=5 w=33 h=100)

increasing
decreasing

100 101 102 103 104

Search time in seconds

−234

−232

−230

−228

−226

−224

−222

Lo
g(

pr
ob

ab
ili

ty
)

pedigree34x2, i15 (n=2320 k=5 w=31 h=102)

increasing
decreasing

Fig. 3. Impact of subproblem ordering on AOBB. Specified for each
network: number of variablesn , max. domain sizek , induced width
w along the chosen ordering, height of the corresponding pseudo
treeh . The dashed gray line indicates the optimal solution value.

(in the general description of AOBB the subproblem
ordering is left unspecified).

Figure 3 contrasts the anytime behavior of AOBB
using this “increasing” subproblem order against the
inverse one (“decreasing”) by plotting the solution cost
generated as a function of time on two example prob-
lems (the dashed horizontal line is the optimum cost);
all other aspects of the algorithm remain constant.
Pedigree30x1 in particular features exactly one single
complex subproblem and a number of relatively simple
ones; in this case processing subproblems by increas-
ing induced width right away produces a non-optimal
solution that improves rapidly. The inverse order yields
the first solution only after about 90 minutes – the
one complex subproblem has been fully solved and
the overall solution is already optimal. Pedigree41x1
has a similarly advantageous structure and thus yields
similar results – with the distinction that the inverse



6 L. Otten and R. Dechter / Anytime AND/OR Depth-first Search for Combinatorial Optimization

subproblem order does not produce any solution at all
within 24 hours.

In case of pedigree34x2, however, decomposition
yields two complex subproblems: the increasing sub-
problem order still outperforms its inverse, yet it re-
turns the initial solution only after about 1,000 sec-
onds. In fact, no possible subproblem ordering can lead
to acceptable anytime behavior in this case due to the
structure of subproblems, clearly highlighting the lim-
its of this approach.

Independent of anytime behavior, we point out that
incorporating different subproblem orderings impacts
the algorithm’s overall efficiency (i.e., the time to find
and prove an optimal solution): knowing the solution
to one subproblem can aid the pruning of Branch and
Bound in the next one to varying degrees. However,
this issue has not been treated systematically in the
literature for graphical models, with sporadic exper-
iments also suggesting an easy-to-hard order, using
some heuristic to determine subproblem complexity
[16]. This general problem is outside the scope of the
present paper, however.

3.2. Greedy Subproblem Dive

Another relatively straightforward remedy that can
be viewed as an “ad hoc” fix is the following: Every
time decomposition is encountered within the search
space, we will try to greedily find a single initial so-
lution to each independent subproblem before succes-
sively solving each of them to completion depth-first,
through normal AOBB. To obtain this initial solution
the algorithm can perform a greedy “dive” into each
subproblem by only considering one value for each
variable along the path (in case of the mini-bucket
heuristic, it is easy to see that this is equivalent to a
forward pass over the bucket structure [11]).

Clearly, the choice of the dive path is crucial for the
algorithm’s performance. Namely, if the chosen path
leads to a dead end (zero probability), the dive will be
futile and not yield a subproblem solution. This again
negates the desired anytime behavior, since the sub-
problem for which the dive failed will not be recon-
sidered until the normal depth-first AOBB phase. And
in fact experiments in Section 5 will demonstrate that
the resulting performance depends heavily on the qual-
ity of the heuristic, which often prevents satisfactory
anytime behavior. In the next section we will therefore
propose a new search strategy that addresses the any-
time issue over AND/OR search spaces in a principled
manner.

4. Breadth-Rotating AOBB

In the following we develop a new search scheme
calledBreadth-Rotating AND/OR Branch and Bound
(BRAOBB)that addresses the issue of anytime per-
formance over AND/OR search spaces. It combines
depth-first exploration with the notion of “rotating”
through different subproblems in a breadth-first man-
ner. Namely, node expansion still occurs depth-first as
in standard AOBB, but the algorithm takes turns in pro-
cessing subproblems, each up to a given number of op-
erations at a time, round-robin style.

To motivate this approach, consider again that a so-
lution is represented by asolution treeover an AND/
OR search space, guided by a pseudo tree. A pure DFS
scheme will construct the different branches of a so-
lution tree one by one, ensuring optimality for each
branch before moving to the next. To restore anytime
behavior, we instead aim to develop all branches of the
solution tree “simultaneously”, which we achieve by
rotating through them.

4.1. Subproblem Rotation

More systematically, the algorithm maintains a list
of currently open subproblems and repeats the follow-
ing high-level steps until completion:

1. Move to next open subproblemP in a breadth-
first fashion.

2. ProcessP depth-first, until either:

(a) P is solved optimally,
(b) P decomposes into child subproblems, or
(c) a predefined threshold number of operations

is reached.

The threshold in (c) is needed to ensure the algo-
rithm does not get stuck in one large subproblem where
the other two conditions, (a) and (b), do not occur for
a long time. Furthermore, in order to focus on a sin-
gle solution tree at a time, a subproblem is only con-
sidered “open” if it does not currently have any child
subproblems, as illustrated below.

4.2. Algorithm Pseudo Code

Algorithm 2 gives more detailed pseudo code for the
scheme (with some details from standard AOBB omit-
ted, cf. Algorithm 1 and [16]). The key element lies in
rotating over the different subproblems of the search
space; by organizing these in a global first-in-first-
out queue (GLOBAL), we emulate breadth-first explo-



L. Otten and R. Dechter / Anytime AND/OR Depth-first Search forCombinatorial Optimization 7

Algorithm 2 Breadth-Rotating AOBB

Given: Graphical model(X,F,D,max,
∏

) and pseudo
treeT with rootXo, rotation thresholdZ

Output: cost of optimal solution
1: ROOT← {〈X0〉} // generate root subproblem
2: pushROOTto end ofGLOBAL
3: while GLOBAL6= ∅
4: LOCAL← front(GLOBAL) // next subproblem
5: for z ← 1 toZ or until LOCAL= ∅

or until childSubprob(LOCAL) 6= ∅
6: n← top(LOCAL) // next node in subproblem
7: ... // caching and pruning as in AOBB
8: if n = 〈Xi〉 is OR node
9: for xj ∈ Di

10: create AND child〈Xi, xj〉
11: add〈Xi, xj〉 to top ofLOCAL
12: else if n = 〈Xi, xj〉 is AND node
13: Y1, . . . , Ym ← childrenT (Xi)
14: generate OR children〈Y1〉, . . . , 〈Yr〉
15: if m=1 // no decomposition
16: push〈Y1〉 to top ofLOCAL
17: else if m > 1 // problem decomposition
18: for r ← 1 tom

19: NEW← {〈Yr〉} // new child subproblem
20: pushNEW to back ofGLOBAL
21: if children(n)= ∅ // n is leaf
22: propagate(n) // upwards in search space
23: if LOCAL 6= ∅ // subproblem not yet solved
24: pushLOCAL to end ofGLOBAL
25: return value(〈X0〉) // root node has optimal solution

ration across the different branches of the solution tree.
The input parameterZ gives the rotation threshold.
Each subproblem is itself explored depth-first (via a lo-
cal last-in-first-out stack of nodes,LOCAL); whenever
a new level of decomposition is encountered, as cap-
tured by the pseudo tree, the resulting child subprob-
lems are pushed to the end of the global queue. Finally,
subproblems are only considered in the rotation if they
don’t currently have any child subproblems.

4.3. Example Execution

Figure 4 demonstrates the scheme’s application
(Z = 2) to the AND/OR search graph in Figure 2(b)
(assuming no pruning). Part (a) shows the first 12
nodes expanded during the first seven iterations of the
outer while loop as follows:(1) Taking the overall
problem as subproblem P0, expand〈A〉 and〈A, 0〉 be-
fore reaching the thresholdZ=2. (2) With no decom-
position so far rotation returns to subproblem P0. Ex-
pand〈B〉 and〈B, 0〉, yielding subproblems P1 and P2
rooted at〈C〉 and〈E〉, respectively, which are added

(a) Expansion of nodes 1–12

(b) Expansion of nodes 13–31

(c) Expansion of nodes 32–44

Fig. 4. BRAOBB exploration (Z=2) at different stages. Nodes are
numbered in order of their expansion.

to the queue.(3) Rotate to subproblem P1 and expand
〈C〉 and〈C, 0〉. (4) Rotate to subproblem P2. Expand
〈E〉 and〈E, 0〉. (5) Rotate to subproblem P0 but skip
it at this point, since its child subproblems P1 and P2
are still open.(6) Rotation moves to subproblem P1.
Expand〈D〉 and〈D, 0〉, discover a leaf and propagate.
(7) Rotate to subproblem P2, expand〈F 〉 and〈F, 0〉 –
which, as a leaf, is propagated to yield the first overall
solution.

Figures 4(b) and (c) illustrate how the search then
proceeds to take turns solving subproblems P1 and P2
to completion (nodes 13–22) before reopening sub-
problem P0. Expansion 23 yields two new independent



8 L. Otten and R. Dechter / Anytime AND/OR Depth-first Search for Combinatorial Optimization

subproblems P3 and P4; their solution is depicted by
nodes 24–41. After that subproblem P0 gets reopened,
where expanding nodes 42–44 again yields two new
subproblems P5 and P6, and so forth.

4.4. Analysis of Breadth-Rotating AOBB

In this Section we analyze the Breadth-Rotating
AOBB algorithm and its properties and contrast it with
standard AOBB.

4.4.1. Correctness, Completeness, and Complexity
Recall that a heuristic function is said to be admis-

sible if it never underestimates (in a maximization sce-
nario) the cost of the optimal solution to a given sub-
problem. The mini-bucket heuristic satisfies this re-
quirement [11]. Further recall thatn denotes the num-
ber of problem variables,k the maximum domain size,
h the height of the guiding pseudo treeT with induced
width andw∗.

THEOREM1. Breadth-Rotating AOBB is complete and
correct assuming an admissible heuristic. Further-
more, when searching an AND/OR search tree (i.e.,
without caching of redundant subproblems), BRAOBB
has time complexityO(n · kh) and space complexity
O(n) . When searching the context-minimal AND/OR
search graph (with full caching), time and space com-
plexity areO(n · kw

∗

) .

Proof. Because of the heuristic’s admissibility, a sub-
space is pruned only if it provably cannot yield a bet-
ter solution than what is already known at this point.
Just like standard AOBB the search also remains sys-
tematic and all solution trees are considered; the algo-
rithm is guaranteed to eventually terminate and return
the optimal solution to the problem.

BRAOBB explores the same underlying AND/OR
search space as standard AOBB, hence its asymptotic
time complexity remains unchanged, i.e. exponential
in h for tree and exponential inw∗ for graph search.
Space complexity for AND/OR graph search is domi-
nated by the caching and thus also remains unchanged
exponential inw∗ .

In case of tree search, recall that subproblems with
child subproblems are not processed further. Therefore
every variable will appear in at most one subproblem
at any given time. And since each subproblem is pro-
cessed depth-first, i.e. in linear space, the space across
all subproblems is also linear inn.

It is worth pointing out that these worst-case bounds
are often very loose, because the Branch and Bound
scheme is typically very efficient and prunes large parts
of the search space. In particular, we observe that in
practice the pruning keeps the cache tables from reach-
ing their worst-case exponential size.

4.4.2. Significance ofZ
The rotation thresholdZ acts as a safeguard against

overly large subproblems, that take a long time to solve
optimally (condition (a), Section 4.1) or where recur-
sive decomposition does not occur for a long time
(condition (b)). Being “stuck” in this way could again
impair anytime performance, which is why we limit
the number of node expansions before enforcing a ro-
tation. As we see in Section 5, however, practical prob-
lems typically exhibit frequent subproblem branching,
so a relatively large threshold ofZ = 1000 or similar
is sufficient, if rarely reached.

4.4.3. Maximum Queue Size
It is easy to see that the maximum number of en-

tries in the GLOBAL queue is dependent on the num-
ber of branchings in the solution tree, corresponding
to pseudo tree nodes with more than one successor,
since that is where the algorithm generates new child
subproblems (lines 17–20, Algorithm 2). In particular,
decomposition does not occur along the chains in the
pseudo tree, i.e., paths where no node (besides the end
points) has outdegree greater than 1. The number of
queue entries is thus bounded by the number of max-
imal chains in the pseudo tree. We can thus state the
following:

THEOREM 2. When exploring an AND/OR search
space using a guiding pseudo treeP with l leaves,
the number of subproblems in the GLOBAL queue of
BRAOBB is bounded by2l − 1 .

Proof. SinceT is a tree withl leaves, there can be at
most l − 1 branchings (nodes with outdegree greater
than 1) inT to yield these leaves. Each such branching
sits at the end of one maximal chain. Together with
the leaf chains, we obtain an upper bound of2l − 1
maximal chains.

4.4.4. Comparison with Standard AOBB
We expect the anytime performance of BRAOBB to

be robust with respect to different subproblem order-
ings, since the algorithm is not forced to “commit” to
a single subproblem – which we identified as the main
reason for the poor anytime behavior of plain AOBB



L. Otten and R. Dechter / Anytime AND/OR Depth-first Search forCombinatorial Optimization 9

in Section 3.1. We will confirm this experimentally in
Section 5.

The actual number of nodes explored by BRAOBB
might differ from plain AOBB (for both graph and
tree search), since the pruning behavior of the algo-
rithm can be impacted by the order in which nodes
are explored and subproblem solutions produced: On
the one hand, solving a subproblem to completion be-
fore processing the next (in AOBB) might allow the
algorithm to calculate a tighter upper bound using
this optimal solution, resulting in better pruning. On
the other hand, exploring subproblems concurrently in
BRAOBB might lead to a tighter overall lower bound
through combining solutions across subproblems as
they are discovered (in an anytime fashion).

5. Empirical Evaluation

To validate and compare the performance of the var-
ious schemes we recorded their anytime behavior on
a variety of problem instances using a common vari-
able ordering and mini-bucket heuristic for each in-
stance (24 hour time limit); unless noted otherwise
subproblems were ordered by increasing width (cf.
Section 3.1). We ran “plain” AOBB, AOBB with the
dive extension (cf. Section 3.2), and Breadth-Rotating
AOBB as presented in Section 4; we also included
OR Branch and Bound (without problem decomposi-
tion) as a baseline. In addition, we ran an advanced
stochastic local search (SLS) algorithm [9], both on its
own and as a initialization step for our own exhaustive
search; in particular we consider the GLS+ implemen-
tation from [9], for which source code is publicly avail-
able. Note that as an incomplete search scheme, it does
not provide a proof of optimality and always runs for
the full 24 hours in our experiments. All algorithms are
implemented in C++ and were run on 2.67 GHz Intel
Xeon CPUs with 2GB of RAM per core.

Our initial test set (instance name suffix “x1”) is
comprised of 19 genetic linkage pedigree problems, 50
randomly generated grid networks, 8 mastermind game
instances (all part of the UAI 2008 evaluation1) as well
as 66 protein side-chain prediction problems (taken
from [22]). However, several of these instances are
relatively simple or have only one complex subprob-
lem, which renders them less interesting for the pur-
pose of this work. Namely, plain AOBB (with subprob-
lems ordered by increasing width) already yields good

1http://graphmod.ics.uci.edu/uai08/

anytime performance and neither the dive extension
nor BRAOBB can provide significant improvements.
Hence we also created additional versions of each net-
work with two or three identical copies connected at
the root (thus ensuring the presence of more than one
complex subproblem), signified by the “x2” and “x3”
suffix, respectively. This yields a total of 57 pedigree
(each run with three different heuristic strengths), 150
grid, 24 mastermind, and 198 protein prediction in-
stances and resulting in over 90,000 CPU hours worth
of experiments.

We present detailed performance results for a repre-
sentative subset of the problem instances in Section 5.1
before Section 5.2 compiles summary statistics across
all 543 problem instances. Section 5.3 evaluates how
our proposed exhaustive search method can benefit
from limited local search. Section 5.4 presents results
on two additional very challenging problem domains,
protein-protein interaction from the UAI 2010 Chal-
lenge and CELAR radio link frequency assignments.
Finally, Section 5.5 analyzes a number of algorithm
parameters empirically.

5.1. Detailed Performance Analysis

Figure 5 shows anytime profiles for some of the
more interesting initial problem instances (“x1” suf-
fix), while Figure 6 presents results on a subset of prob-
lem instances with more than one complex subproblem
(“x2” and “x3” suffix). For every problem instance, the
plot title specifies number of variablesn , max. domain
sizek , induced widthw along the chosen ordering, and
height of the corresponding pseudo treeh . If known,
the optimal solution value is indicated by a gray dashed
horizontal line. The title of each plot also notes the
mini-bucketi-bound; this was typically chosen to fit
a 1GB memory limit, except for pedigree instances,
where three different heuristic strengths (i = 7, 10, 15)
were applied for each instance.

In Figure 5 as well as 6 we note that OR Branch and
Bound finds an early lower bound in some cases, but
generally provides little improvement over time and
never gets close to the optimum. The dive extension
shows acceptable anytime behavior only on half the in-
stances shown, confirming our conjecture that its per-
formance depends solely on the success of the initial
dive – if misguided by the heuristic, the anytime be-
havior is predictably as bad as, or even slightly worse
than the plain scheme.

The proposed BRAOBB, on the other hand, exhibits
impressive anytime performance in both Figures 5 and



10 L. Otten and R. Dechter / Anytime AND/OR Depth-first Search for Combinatorial Optimization

100 101 102 103 104

Search time in seconds

−18.0

−17.5

−17.0

−16.5

Lo
g(

pr
ob

ab
ili

ty
)

75-25-1x1, i20 (n=624 k=2 w=38 h=111)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−115

−110

−105

−100

Lo
g(

pr
ob

ab
ili

ty
)

pedigree19x1, i10 (n=793 k=5 w=26 h=95)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−180

−170

−160

−150

−140

−130

Lo
g(

pr
ob

ab
ili

ty
)

pedigree31x1, i7 (n=1183 k=5 w=30 h=85)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−54

−52

−50

−48

Lo
g(

pr
ob

ab
ili

ty
)

pdb1bgfx1, i4 (n=112 k=81 w=14 h=44)

or
plain
dive
rotate

Fig. 5. Anytime profiles of plain AOBB (“plain”), AOBB with subproblem dive (“dive”), Breadth-Rotating AOBB (“rotate”),and OR Branch
and Bound (“or”) on selected instances from the initial set of problems (“x1” suffix; 1 grid, 2 pedigree, 1 side-chain prediction).

6, often by a large margin; in all but one case the first
solution is produced more or less instantly, even on
pedigree51x3 (Fig. 6), where “plain” and “dive” do not
return anything within 24 hours. Note that mastermind
instances are highly deterministic and the initial solu-
tion is already optimal – but again BRAOBB returns it
first.

5.2. Summary Statistics

Table 1 summarizes the entire set of experiments by
showing, at different points of time, the number of in-
stances for which any solution was found, for which
the optimal solution was found, and for which opti-
mality was proven (i.e. the algorithm terminated). The
results confirm that BRAOBB yields superior anytime
performance: for example, within 1 second it provides
an initial solution on 502 instances (out of 543), com-
pared to just 232 for plain AOBB, 339 for the dive ex-
tension, and 424 for local search; performance remains
superior to the other AOBB versions and very compet-
itive with local search for higher time bounds.

We also note that BRAOBB finds the optimal solu-
tion quicker than the other schemes (with the excep-
tion of local search on side-chain prediction), e.g. for
overall 266 instances after 10 seconds (versus 220 for
plain). Similarly, in the full 24 hours, BRAOBB found
the optimal solution to 495 instances, versus 486 for
plain and just 316 for local search.

Furthermore, we see that plain AOBB sometimes
has a slight edge in terms of proving optimality,
e.g. 172 proved optimal at 10 seconds versus 153
for BRAOBB, confirming that exploring subproblems
concurrently can slightly impair the pruning (cf. Sec-
tion 4.4). Again, as an incomplete solver local search
proves no optimality at all.

We observe that SLS does very well on the side-
chain prediction networks – these problems have only
a few hundred variables but a large max. domain
size of 81. On the other problem classes, however,
with thousands of variables and smaller max. domains,
BRAOBB shows better performance, in particular with
respect to finding the optimal solution. The reason
for this lies in the heuristic used by AOBB: mini-
bucket space complexity isO(nki) – large domain
size boundsk thus necessitate a significantly loweri-
bound (i = 3 in case of the side-chain prediction prob-
lems), which leads to far less accurate heuristics.

5.3. Combining Local and Exhaustive Search

Looking again at Table 1, we notice that SLS can
sometimes find solutions more quickly than any kind
of exhaustive search – in particular it has found a solu-
tion for all 543 problems after 10 seconds (versus 514
instances for BRAOBB and just 293 for plain AOBB).
As outlined above, however, SLS is often quickly out-
performed by AOBB and BRAOBB in terms of find-



L. Otten and R. Dechter / Anytime AND/OR Depth-first Search forCombinatorial Optimization 11

100 101 102 103 104

Search time in seconds

−51
−50
−49
−48
−47
−46
−45
−44

Lo
g(

pr
ob

ab
ili

ty
)

75-22-3x3, i20 (n=1449 k=2 w=32 h=94)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−58

−57

−56

−55

−54

−53

−52

Lo
g(

pr
ob

ab
ili

ty
)

75-23-1x3, i19 (n=1584 k=2 w=34 h=115)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−52.5

−52.0

−51.5

−51.0

−50.5

−50.0

Lo
g(

pr
ob

ab
ili

ty
)

75-25-1x3, i19 (n=1872 k=2 w=38 h=111)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−232

−230

−228

−226

−224

−222

Lo
g(

pr
ob

ab
ili

ty
)

pedigree34x2, i15 (n=2320 k=5 w=31 h=102)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−265

−260

−255

−250

−245

Lo
g(

pr
ob

ab
ili

ty
)

pedigree9x2, i15 (n=2236 k=7 w=27 h=100)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−280

−275

−270

−265

−260

Lo
g(

pr
ob

ab
ili

ty
)

pedigree31x2, i15 (n=2366 k=5 w=30 h=85)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−365

−360

−355

−350

−345

−340

−335

−330

Lo
g(

pr
ob

ab
ili

ty
)

pedigree51x3, i15 (n=3456 k=5 w=39 h=98)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−84

−82

−80

−78

−76

Lo
g(

pr
ob

ab
ili

ty
)

mm-10-08-03-0012x3, i10 (n=7674 k=2 w=47 h=82)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−148

−146

−144

−142

−140

−138

−136

−134

Lo
g(

pr
ob

ab
ili

ty
)

pdb1dlyx3, i3 (n=300 k=81 w=10 h=25)

or
plain
dive
rotate

100 101 102 103 104

Search time in seconds

−185

−180

−175

−170

−165

−160

Lo
g(

pr
ob

ab
ili

ty
)

pdb2pvbx3, i3 (n=240 k=81 w=12 h=27)

or
plain
dive
rotate

Fig. 6. Anytime profiles of plain AOBB (“plain”), AOBB with subproblem dive (“dive”), Breadth-Rotating AOBB (“rotate”),and OR Branch and
Bound (“or”) on selected instances with more than one complex subproblem (“x2” or “x3” suffix; 3 grids, 4 pedigree, 1 mastermind, 2 side-chain
prediction).



12 L. Otten and R. Dechter / Anytime AND/OR Depth-first Search for Combinatorial Optimization

Table 1

Summary statistics over 543 instances for OR Branch and Bound,
plain AOBB, AOBB with dive extension, breadth-rotating AOBB,
stochastic local search, as well as plain and breadth-rotating AOBB
with 10 seconds of initial local search. In each case we list the num-
ber of cases for which, within the respective time bound, (1) any so-
lution was found, (2) the optimal solution was found, (3) optimality
was proven.

Time bound

1 sec 5 sec 10 sec 1 min 5 min 1 hour 24 hours

Pedigree networks (171 total)

or 77 / 6 / 6 78 / 10 / 8 82 / 11 / 9 84 / 14 / 12 87 / 15 / 13 91 / 18 / 18 94 / 23 / 22

plain 65 / 31 /24 77 / 45 /41 85 / 55 / 45 99 / 72 /64 105 / 80 /75 113 / 94 / 87 136 / 125 /119
dive 83 / 24 / 17 95 / 43 / 36 102 / 51 / 43 113 / 67 / 61 119 / 77 / 72 127 / 92 / 87 136 / 120 / 113

rotate 157 / 38 / 22 161 /50 / 37 162 /55 / 44 162 / 69 / 59 163 / 80 / 71 165 / 97 / 87 168 / 132 / 112

sls 144 / 9 / 0 171 / 21 / 0 171 / 24 / 0 171 / 39 / 0 171 / 66 / 0 171 / 78 / 0 171 / 78 / 0

plain+sls 146 / 9 / 0 171 / 13 / 0 171 / 30 / 12 171 / 74 / 62 171 / 84 / 74 171 / 100 /88 171 / 129 / 118

rotate+sls 148 / 10 / 0 171 / 13 / 0 171 / 45 / 15 171 / 80 / 57 171 / 93 / 72 171 / 106 / 86 171 / 136 / 111

Grid networks (150 total)

or 45 / 1 / 0 47 / 1 / 0 51 / 2 / 0 55 / 3 / 2 62 / 7 / 4 67 / 15 / 10 78 / 25 / 24

plain 47 / 15 /3 65 / 39 /23 77 / 52 /40 94 / 76 /69 109 / 97 / 89 138 / 135 /133 149 /149 / 149
dive 52 / 11 / 1 65 / 32 / 13 72 / 44 / 27 94 / 70 / 64 106 / 91 / 84 134 / 129 / 123 149 /149 / 149
rotate 129 / 24 / 1 133 /44 / 9 136 /59 / 23 140 / 82 / 65 143 /107 / 90 147 /139 / 132 149 /149 / 149

sls 81 / 0 / 0 150 / 0 / 0 150 / 0 / 0 150 / 2 / 0 150 / 6 / 0 150 / 21 / 0 150 / 21 / 0

plain+sls 76 / 0 / 0 150 / 0 / 0 150 / 10 / 1 150 / 79 / 67 150 / 97 / 88 150 / 135 / 132 150 / 149 / 149
rotate+sls 83 / 0 / 0 150 / 0 / 0 150 / 14 / 0 150 / 83 / 64 150 / 106 /90 150 / 139 / 131 150 / 149 / 149

Protein side-chain prediction networks (198 total)

or 198 / 78 / 49 198 / 79 / 52 198 / 80 / 53 198 / 82 / 57 198 / 89 / 61 198 / 90 / 70 198 / 99 / 82

plain 114 / 95 / 78 120 / 102 /85 124 / 106 /87 133 / 117 / 102 145 / 132 / 116 168 / 163 / 148 191 / 188 / 186

dive 198 / 102 / 76 198 / 108 / 84 198 / 110 / 86 198 / 122 / 100 198 / 133 / 112 198 / 161 / 141 198 / 185 / 181

rotate 198 / 128 /79 198 / 133 /85 198 / 136 / 86 198 / 151 /104 198 / 165 /120 198 / 180 /157 198 / 190 /190

sls 198 / 193 / 0 198 / 198 / 0 198 / 198 / 0 198 / 198 / 0 198 / 198 / 0 198 / 198 / 0 198 / 198 / 0

plain+sls 198 / 193 / 0 198 / 198 / 0 198 / 198 / 51 198 / 198 / 81 198 / 198 / 98 198 / 198 / 132 198 / 198 / 169

rotate+sls 198 / 191 / 0 198 / 198 / 0 198 / 198 / 47 198 / 198 / 83 198 / 198 / 104 198 / 198 / 140 198 / 198 / 172

Mastermind networks (24 total)

or 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0

plain 6 / 6 / 0 7 / 7 / 0 7 / 7 / 0 9 / 9 / 3 12 / 12 / 6 20 / 20 / 18 24 / 24 / 24
dive 6 / 6 / 0 7 / 7 / 0 8 / 8 / 1 10 / 10 /3 12 / 12 / 6 23 / 23 /22 24 / 24 / 24
rotate 18 / 16 / 0 18 / 16 / 0 18 / 16 / 0 19 / 19 / 3 24 / 24 / 10 24 / 24 / 21 24 / 24 / 24

sls 1 / 1 / 0 18 / 14 / 0 24 / 18 / 0 24 / 18 / 0 24 / 19 / 0 24 / 19 / 0 24 / 19 / 0

plain+sls 1 / 1 / 0 18 / 13 / 0 24 / 13 / 0 24 / 14 / 3 24 / 16 / 6 24 / 22 / 18 24 / 24 / 24
rotate+sls 2 / 2 / 0 18 / 13 / 0 24 / 13 / 0 24 / 17 / 3 24 / 24 / 9 24 / 24 / 21 24 / 24 / 24

Overall (543 total)

or 320 / 85 / 55 323 / 90 / 60 331 / 93 / 62 337 / 99 / 71 347 / 111 / 78 356 / 123 / 98 370 / 147 / 128

plain 232 / 147 /105 269 / 193 /149 293 / 220 /172 335 / 274 /238 371 / 321 / 286 439 / 412 / 386 500 / 486 /478
dive 339 / 143 / 94 365 / 190 / 133 380 / 213 / 157 415 / 269 / 228 435 / 313 / 274 482 / 405 / 373 507 / 478 / 467

rotate 502 / 206 / 102 510 /243 / 131 514 / 266 / 153 519 / 321 / 231 528 / 376 /291 534 / 440 /397 539 / 495 / 475

sls 424 / 203 / 0 537 / 233 / 0 543 / 240 / 0 543 / 257 / 0 543 / 289 / 0 543 / 316 / 0 543 / 316 / 0

plain+sls 421 / 203 / 0 537 / 224 / 0 543 / 251 / 64 543 / 365 / 213 543 / 395 / 266 543 / 455 / 370 543 / 500 / 460

rotate+sls 431 / 203 / 0 537 / 224 / 0 543 / 270 / 62 543 / 378 / 207 543 / 421 / 275 543 / 467 / 378 543 / 507 / 456



L. Otten and R. Dechter / Anytime AND/OR Depth-first Search forCombinatorial Optimization 13

100 101 102 103 104

Search time in seconds

−59
−58
−57
−56
−55
−54
−53
−52

Lo
g(

pr
ob

ab
ili

ty
)

75-23-1x3, i19 (n=1584 k=2 w=34 h=115)

plain
rotate
sls
plain+sls
rotate+sls

100 101 102 103 104

Search time in seconds

−58

−56

−54

−52

−50

Lo
g(

pr
ob

ab
ili

ty
)

75-25-1x3, i19 (n=1872 k=2 w=38 h=111)

plain
rotate
sls
plain+sls
rotate+sls

100 101 102 103 104

Search time in seconds

−390

−385

−380

−375

−370

−365

−360

Lo
g(

pr
ob

ab
ili

ty
)

pedigree41x3, i15 (n=3186 k=5 w=33 h=100)

plain
rotate
sls
plain+sls
rotate+sls

100 101 102 103 104

Search time in seconds

−360

−355

−350

−345

−340

−335

−330

Lo
g(

pr
ob

ab
ili

ty
)

pedigree51x3, i15 (n=3456 k=5 w=39 h=98)

plain
rotate
sls
plain+sls
rotate+sls

100 101 102 103 104

Search time in seconds

−190

−180

−170

−160

Lo
g(

pr
ob

ab
ili

ty
)

pdb2ilkx3, i3 (n=426 k=81 w=10 h=41)

plain
rotate
sls
plain+sls
rotate+sls

Fig. 7. Anytime profiles comparing exhaustive AOBB against SLS
and combinations of the two on select problem instances.

ing the optimal solution, let alone proving optimality
(which is impossible with local search). For instance,
local search has found only 257 optimal solutions after
1 minute (versus 321 for BRAOBB and 274 for plain
AOBB) or 316 at the 24 hour timeout (compared to 495
for BRAOBB, 486 for plain AOBB).

We have thus devised simple, combined schemes
that run local search for 10 seconds as a preprocess-
ing step; the resulting solution is then used as an ini-
tial lower bound for the exhaustive search. Results for
plain AOBB and BRAOBB augmented in this way, de-
noted “plain+sls” and “rotate+sls”, respectively, are in-
cluded in Table 1. Figure 7 also shows detailed anytime
profiles on five problem instances, comparing local and
exhaustive search, as well as their combinations.

Indeed we see “plain+sls” and “rotate+sls” match
local search in terms of initial performance and quickly
returning a solution (deviations here are due to ran-
domization). Just as for SLS, however, solution qual-
ity can be inferior to BRAOBB (see instances 75-25-
1x3 and pedigree41x3, Fig. 7), but after 10 seconds the
combined schemes quickly catch up to plain AOBB
and BRAOBB, respectively, as local search prepro-
cessing finishes and exhaustive search takes over. Here
“rotate+sls” has the edge over “plain+sls” in terms of
getting to and proving optimality. Overall we therefore
believe that “rotate+sls” best combines the benefits of
the two search paradigms.

5.4. Additional Problem Domains

In addition to the benchmark set used in the previous
sections, we consulted two additional, very challeng-
ing problem domains: protein-protein interaction in-
stances (seven problems were made available from the
UAI 2010 Challenge) and three CELAR radio link fre-
quency assignment instances converted from weighted
constraint satisfaction problems (see e.g. [1]), for all of
which optimal solutions are unavailable.

Figure 8 shows anytime profiles for three of the
protein-protein interaction networks while Figure 9
presents the results for the three CELAR problems;
plain AOBB fails to produce any solution within the
24 hour time limit and is thus omitted. In all cases
BRAOBB and even the initial subproblem dive suc-
cessfully restore the anytime performance – as before,
BRAOBB is typically far superior.

For protein-protein interaction BRAOBB also out-
performs SLS, which seems to struggle with the large
number of problem variables and never improves upon
its initial solution. “rotate+sls” suffers from this as



14 L. Otten and R. Dechter / Anytime AND/OR Depth-first Search for Combinatorial Optimization

100 101 102 103 104

Search time in seconds

-1295
-1294
-1293
-1292
-1291
-1290
-1289
-1288
-1287
-1286

Lo
g(
pr
ob
ab
ili
ty
) [

·10
1
]

protein2, i14 (n=14441 k=2 w=1070 h=1260)

dive
rotate
sls
rotate+sls

100 101 102 103 104

Search time in seconds

-1322
-1321
-1320
-1319
-1318
-1317
-1316
-1315
-1314
-1313

Lo
g(
pr
ob
ab
ili
ty
) [

·10
1
]

protein6, i14 (n=14258 k=2 w=1093 h=1334)

dive
rotate
sls
rotate+sls

100 101 102 103 104

Search time in seconds

-1329
-1328
-1327
-1326
-1325
-1324
-1323
-1322
-1321
-1320
-1319

Lo
g(
pr
ob
ab
ili
ty
) [

·10
1
]

protein7, i14 (n=14352 k=2 w=1081 h=1287)

dive
rotate
sls
rotate+sls

Fig. 8. Anytime profiles on very hard protein-protein interaction
instances from the UAI’10 and PASCAL’11 Inference Challenges.
“plain” and “or” did not produce any solutions within 24 hours.

well during its local search preprocessing, but quickly
catches up to BRAOBB, as seen in previous sections.

CELAR networks have fewer variables and large
domain sizes (k = 44), which as before results in a
weaker mini-bucket heuristic (with loweri-bound) for
AOBB. This gives an advantage to SLS, which does
not rely on the heuristic and is able to outperform
BRAOBB in two of the tree plots shown in Figure 9.
Yet in neither of these cases does SLS improve signif-
icantly over time, so the combined “rotate+sls” again
presents the best compromise.

5.5. BRAOBB Analysis

In the following we investigate several aspects of
BRAOBB more closely and compare some of its prop-
erties to plain AOBB empirically.

100 101 102 103 104

Search time in seconds

−35

−30

−25

−20

−15

Lo
g(

pr
ob

ab
ili

ty
)

scen06-wcsp, i3 (n=100 k=44 w=11 h=25)

dive
rotate
sls
rotate+sls

100 101 102 103 104

Search time in seconds

−20

−15

−10

−5

0

Lo
g(

pr
ob

ab
ili

ty
)

scen07-wcsp, i3 (n=200 k=44 w=16 h=34)

dive
rotate
sls
rotate+sls

100 101 102 103 104

Search time in seconds

−500

−450

−400

−350

Lo
g(

pr
ob

ab
ili

ty
)

scen08-wcsp, i3 (n=453 k=44 w=16 h=44)

dive
rotate
sls
rotate+sls

Fig. 9. Anytime profiles on three very hard WCSPs (encoded as MPE
problems) from the CELAR radio link frequency assignment do-
main. “plain” and “or” did not produce any solution within 24 hours.

5.5.1. Heuristic Accuracy
We’ve demonstrated above how the performance of

BRAOBB can suffer if the heuristic is very inaccu-
rate (i.e., thei-bound of the mini-buckets is low) when
comparing against local search. Here we compare the
different AOBB schemes with respect to their sensi-
tivity for the heuristic’s accuracy. Figure 10 contrasts
plain AOBB, dive, and BRAOBB each with two dif-
ferent heuristics, parametrized by the mini-bucketi-
bound. In both cases plain AOBB fails or does very
poorly due to problem decomposition; AOBB with
dive depends very much on the heuristic and fails or
does poorly with the weaker one. BRAOBB, however,
exhibits acceptable anytime behavior even with the
weaker heuristic and is more robust.

5.5.2. Subproblem Ordering
Going back to Section 3.1, Figure 11 compares the

performance of BRAOBB with subproblems ordered



L. Otten and R. Dechter / Anytime AND/OR Depth-first Search forCombinatorial Optimization 15

100 101 102 103 104

Search time in seconds

−285

−280

−275

−270

−265

−260

Lo
g(

pr
ob

ab
ili

ty
)

pedigree31x2 (n=2366 k=5 w=30 h=85)

plain-i10
dive-i10
rotate-i10

plain-i15
dive-i15
rotate-i15

100 101 102 103 104

Search time in seconds

−258

−256

−254

−252

−250

−248

−246

Lo
g(

pr
ob

ab
ili

ty
)

pedigree9x2 (n=2236 k=7 w=27 h=100)

plain-i10
dive-i10
rotate-i10

plain-i15
dive-i15
rotate-i15

Fig. 10. Impact of heuristic accuracy on anytime performance: com-
paringi-bound 10 and 15 on two pedigree instances.

100 101 102 103 104

Search time in seconds

−240

−235

−230

−225

Lo
g(

pr
ob

ab
ili

ty
)

pedigree34x2, i15 (n=2320 k=5 w=31 h=102)

plain-inc
plain-dec
rotate-inc
rotate-dec

100 101 102 103 104

Search time in seconds

−254

−252

−250

−248

−246

Lo
g(

pr
ob

ab
ili

ty
)

pedigree9x2, i10 (n=2236 k=7 w=27 h=100)

plain-inc
plain-dec
rotate-inc
rotate-dec

Fig. 11. Impact of subproblem ordering on anytime performance:
subproblems ordered by increasing and decreasing induced width for
plain AOBB and BRAOBB.

by increasing and decreasing width. In contrast to plain
AOBB (included in Figure 11 for reference) our new
scheme is very robust and delivers nearly the same per-
formance in both cases.

100 101 102 103 104

Search time in seconds

−225

−224

−223

−222

−221

−220

Lo
g(

pr
ob

ab
ili

ty
)

pedigree13x3, i15-rotate (n=3231 k=3 w=32 h=102)

Z10
Z1000
Z100000
Z10000000

100 101 102 103 104

Search time in seconds

−274
−272
−270
−268
−266
−264
−262
−260

Lo
g(

pr
ob

ab
ili

ty
)

pedigree31x2, i15-rotate (n=2366 k=5 w=30 h=85)

Z10
Z1000
Z100000
Z10000000

Fig. 12. Impact of rotation thresholdZ : running BRAOBB with
Z ∈ {10, 1000, 100000, 10000000}.

5.5.3. Rotation Threshold
Finally, we conducted experiments with different

values for the rotation thresholdZ in Algorithm 2,
ranging from 10 to 10 million node expansions. As
shown in Figure 12, no significant difference in prac-
tical performance is visible. To investigate further,
we conducted a number of BRAOBB runs where we
recorded the number of node expansions between stack
rotations. Representative results are shown in Figure
13 in the form of histograms: noting the vertical log
scale, we observe that the majority of stack rotations
happens after only very few node expansions, further
confirming the analysis in Section 4.4.

6. Summary

Exploiting problem decomposition in search meth-
ods has been proven to yield significantly better overall
complexity in many cases. Yet this article has demon-
strated how it can be in direct conflict with the depth-
first nature of Branch and Bound, thus impairing the
important anytime properties of this class of algo-
rithms. Specifically, to obtain an overall result, a partial
solution is required from every independent subprob-
lem, which we have shown to be in direct contradiction
to the depth-first, consecutive processing of subprob-
lems.



16 L. Otten and R. Dechter / Anytime AND/OR Depth-first Search for Combinatorial Optimization

0 20 40 60 80
Node expansions z before stack rotation

100

101

102

103

104

105

106

107

108

St
ac

k 
ro

ta
tio

ns

pedigree30x3, i10 (n=3867 k=5 w=21 h=108)
Average expansions per rotation: 3.88

0 50 100 150 200
Node expansions z before stack rotation

100
101
102
103
104
105
106
107
108
109
1010

St
ac
k 
ro
ta
tio

ns

pedigree9x2, i15 (n=2236 k=7 w=27 h=100)
Average expansions per rotation: 3.79

0 50 100 150 200 250 300 350 400
Node expansions z before stack rotation

100
101
102
103
104
105
106
107
108

St
ac
k 
ro
ta
tio

ns

75-23-1x3, i20 (n=1584 k=2 w=34 h=115)
Average expansions per rotation: 7.26

Fig. 13. Histograms showing number of node expansions between
stack rotations for three different runs of BRAOBB (note thevertical
log scale). The rotation threshold was set toZ = 1000 in each case,
but evidently never reached in practice.

We devised a “quick fix” that employs an initial
greedy subproblem dive, but whose performance we
found to be lacking due to heavy dependence on the
underlying heuristic.

The main contribution of this work is the new
schemeBreadth-Rotating AND/OR Branch and Bound
(BRAOBB), which periodically iterates over the differ-
ent subproblems in a “breadth-first” manner. Yet we
have shown that it retains many desirable properties of
the depth-first strategy. In particular, its memory com-
plexity remains linear in the number of variables (not
accounting for caching).

We presented an exhaustive set of successful exper-
iments on problems from several different domains.
The results confirmed the vastly improved anytime
performance of BRAOBB, especially in cases where
standard depth-first Branch and Bound and its “ad
hoc” extensions fail. We also showed BRAOBB to be

very competitive with a state-of-the-art stochastic local
search algorithm, in many cases even surpassing it (un-
less the mini-bucket heuristic is very inaccurate). In ad-
dition, we demonstrated how the two paradigms can be
combined to get the best of both worlds. The power of
this enhanced algorithm was recently further exempli-
fied by placing first in all three categories of the MPE
track of the PASCAL 2011 Inference Challenge [8].

Possible future directions include more elaborate
rotation schemes, for instance assigning the rotation
threshold dynamically based on subproblem-specific
heuristic estimates. Given the observations in Section
5.5.3, however, it is unclear whether these would have
much a major impact in practice.

Acknowledgments

We thank the reviewers of this article and of an ear-
lier conference version for their feedback and construc-
tive suggestions. This work was partially supported by
NSF grants IIS-0713118, IIS-1065618 and NIH grant
5R01HG004175-03. Also supported in part by the Is-
raeli Science Foundation.

References

[1] D. Allouche, S. de Givry, and T. Schiex. Towards parallelnon
serial dynamic programming for solving hard weighted CSP.
In CP, pages 53–60, 2010.

[2] F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination:
Bayesian interence via backtracking search. InUAI, pages 20–
28, 2003.

[3] A. Chechetka and K. P. Sycara. No-commitment branch and
bound search for distributed constraint optimization. InAA-
MAS, pages 1427–1429, 2006.

[4] A. Darwiche. Recursive conditioning.Artif. Intell., 126(1-
2):5–41, 2001.

[5] R. Dechter and R. Mateescu. AND/OR search spaces for
graphical models.Artif. Intell., 171(2-3):73–106, 2007.

[6] R. Dechter and I. Rish. Mini-buckets: A general scheme for
bounded inference.Journal of the ACM, 50(2):107–153, 2003.

[7] G. Elidan and A. Globerson. UAI 2010 approximate inference
challenge. http://www.cs.huji.ac.il/project/
UAI10/.

[8] G. Elidan, A. Globerson, and U. Heinemann. PASCAL 2011
probabilistic inference challenge.http://www.cs.huji.
ac.il/project/PASCAL/.

[9] F. Hutter, H. H. Hoos, and T. Stützle. Efficient stochastic local
search for MPE solving. InIJCAI, pages 169–174, 2005.

[10] P. J́egou and C. Terrioux. Decomposition and good recording
for solving max-CSPs. InECAI, pages 196–200, 2004.

[11] K. Kask and R. Dechter. A general scheme for automatic gen-
eration of search heuristics from specification dependencies.
Artif. Intell., 129(1-2):91–131, 2001.



L. Otten and R. Dechter / Anytime AND/OR Depth-first Search forCombinatorial Optimization 17

[12] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying tree
decompositions for reasoning in graphical models.Artif. Intell.,
166(1-2):165–193, 2005.

[13] K. Kask, A. Gelfand, L. Otten, and R. Dechter. Pushing the
power of stochastic greedy ordering schemes for inference in
graphical models. InAAAI, 2011.

[14] U. Kjaerulff. Triangulation of graphs – algorithms giving small
total state space. Technical report, Aalborg University, 1990.

[15] J. Larrosa and T. Schiex. Solving weighted CSP by maintaining
arc consistency.Artif. Intell., 159(1-2):1–26, 2004.

[16] R. Marinescu and R. Dechter. AND/OR Branch-and-Bound
search for combinatorial optimization in graphical models.Ar-
tif. Intell., 173(16-17):1457–1491, 2009.

[17] R. Marinescu and R. Dechter. Memory intensive AND/OR
search for combinatorial optimization in graphical models.Ar-
tif. Intell., 173(16-17):1492–1524, 2009.

[18] P. Meseguer. Interleaved depth-first search. InIJCAI, pages
1382–1387, 1997.

[19] N. Nilsson. Artificial Intelligence: A New Synthesis. Morgan
Kaufmann, 1998.

[20] J. Pearl.Probabilistic Reasoning in Intelligent Systems. Mor-
gan Kaufmann, 1988.

[21] R. J. Wallace. Analysis of heuristic methods for partialcon-
straint satisfaction problems. InCP, pages 482–496, 1996.

[22] C. Yanover, O. Schueler-Furman, and Y. Weiss. Minimizing
and learning energy functions for side-chain prediction.Jour-
nal of Computational Biology, 15(7):899–911, 2008.

[23] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An asyn-
chronous branch-and-bound dcop algorithm.J. Artif. Intell.
Res. (JAIR), 38:85–133, 2010.

[24] S. Zilberstein. Using anytime algorithms in intelligentsystems.
AI Magazine, 17(3):73–83, 1996.


