
Haski the Robot - 1/11 Lars Otten, December 2004

Haski the Robot

Final examination project for
Advanced Functional Programming 2004

Lars Otten
<ottenl@student.chalmers.se>

Haski the Robot - 2/11 Lars Otten, December 2004

A robot? WTF?!
● The motivation for this project goes back to a

progamming course in secondary school

– We used "Niki der Roboter", a very stripped-down
versions of Pascal

– Originally based on "Karel - the Robot" by Richard E.
Pattis, 1981

– There are variants for C, Java and the like

● But this one is new:

– It's all Haskell ! :-)

Haski the Robot - 3/11 Lars Otten, December 2004

What is it?
● Haski the robot is a complete programming

environment for the very simple language "Haski"

– The user controls a small robot on a working area,
trying to accomplish various tasks

● Intended for people who have no or very little
previous programming experience

● Keep it simple !

– Very limited choice of commands
– Only basic syntactical structures

Haski the Robot - 4/11 Lars Otten, December 2004

So what does Haski offer?
● Haski's main features:

– A fully-fledged GUI that shows the working area and
the robot(s) as they execute the programs

– A quite sophisticated lexical and syntactical parser
for Haski-programs and mapfiles

● Reads Haski-code and map definitions from files and
parses them, creating a suitable data structure which
can be used by the GUI and it's underlying interpreter

– It is independent of GHCi, i.e. it can be compiled and
distributed as a stand-alone executable file.

● Important for usability wrt. unexperienced users
– An extensive user manual with lots of examples

Haski the Robot - 5/11 Lars Otten, December 2004

Let's have a look
● Working area divided

into 15x20 fields
● Movement blocked by

walls
● Items lying on certain

fields
● One or more robots

at the same time

Haski the Robot - 6/11 Lars Otten, December 2004

Haski commands
● Controlling a robot is simple:

– The robot understands the following commands:
● go_forward
● turn_right
● take_item
● drop_item
● do_nothing

– It implements some boolean sensors:
● front_free, left_free, right_free
● facing_up, facing_right, facing_down,
facing_left

● field_has_item, is_carrying

Haski the Robot - 7/11 Lars Otten, December 2004

Writing programs
● Commands can be combined with "&>"

– turn_right &> go_forward &> take_item
● Four conditional expressions:

● IfThen <condition> <commands>
● IfThenElse <condition> <commands> <commands>
● While <condition> <commands>
● DoWhile <commands> <condition>

● Condition:

– Built of sensors or combination of sensors
● :& for AND, :| for OR, Not for negation

Haski the Robot - 8/11 Lars Otten, December 2004

Functions
● A program consists of one or more function

definitions:
– main = While front_free go_forward

● Every program must have the main-function

● More functions can be defined and used elsewhere:
– main = go_forward &>
 IfThen left_free turn_left

turn_left = turn_right &>
 turn_right &>
 turn_right

Haski the Robot - 9/11 Lars Otten, December 2004

Implementation
● Main steps (rough outline):

– Implement the GUI and its underlying interpreter
● Used embedded language in the beginning

– Build a lexical and syntactical parser for programs
– Add error handling and meaningful output to parser
– Build a lexical and syntactical parser for mapfiles
– Add error handling here as well
– Add some refinements to the GUI like loading

programs and maps and a log-window
– Bugfixing :-p

Haski the Robot - 10/11 Lars Otten, December 2004

Parsing
● Parsing consists of two steps

– lexer :: String -> [Token]
● Define list of Tokens using RegEx
● Haskell-lexer is generated with the tool Alex

– parser :: [Token] -> Program
● Define a suitable CFG for the language and how it

translates to the internal data structure for programs
● Use Happy to generate a Haskell-parser

● Problem with this simple version:

– On parsing errors the haskell function error "..."
is called, which is definitely not good style

Haski the Robot - 11/11 Lars Otten, December 2004

Parse-error handling
● Monadic approach:

– Construct a monad for handling and passing errors
● data Parse a = Ok a | Failed String
instance Monad Parse where ...

● lexer :: String -> Parse [Token]
parser :: [Token] -> Parse Program

● Final parser is \s -> lexer s >>= parser
– We want meaningful error messages

● Line/column numbers and strings have to be passed
around while parsing, which gets pretty messy

● Monad has to be integrated into the parsing, requires
quite some handwork

